
deepforge Documentation

Brian Broll

Aug 09, 2018

Getting Started

1 Getting Started 1

2 Quick Start 3

3 Custom Operations 5

4 Overview 11

5 Native Installation 13

6 Dockerized Installation 17

7 Command Line Interface 19

8 Configuration 21

9 Operation Feedback 23

i

ii

CHAPTER 1

Getting Started

1.1 What is DeepForge?

Deep learning is a very promising, yet complex, area of machine learning. This complexity can both create a barrier to
entry for those wanting to get involved in deep learning as well as slow the development of those already comfortable
in deep learning.

DeepForge is a development environment for deep learning focused on alleviating these problems. Leveraging prin-
ciples from Model-Driven Engineering, DeepForge is able to reduce the complexity of using deep learning while
providing an opportunity for integrating with other domain specific modeling environments created with WebGME.

1.2 Design Goals

As mentioned above, DeepForge focuses on two main goals:

1. Improving the efficiency of experienced data scientists/researchers in deep learning

2. Lowering the barrier to entry for newcomers to deep learning

It is important to highlight that although one of the goals is focused on lowering the barrier to entry, DeepForge is
intended to be more than simply an educational tool; that is, it is important not to compromise on flexibility and
effectiveness as a research/industry tool in order to provide an easier experience for beginners (that’s what forks are
for!).

1.3 Overview and Features

DeepForge provides a collaborative, distributed development environment for deep learning. The development en-
vironment is a hybrid visual and textual programming environment. Higher levels of abstraction, such as creating
architectures, use visual environments to capture the overall structure of the task while lower levels of abstraction,
such as defining custom training functions, utilize text environments. DeepForge contains both a pipelining language

1

https://webgme.org

deepforge Documentation

and editor for defining the high level operations to perform while training or evaluating your models as well as a
language for defining neural networks (through installing a DeepForge extension such as DeepForge-Keras).

1.3.1 Concepts and Terminology

• Operation - essentially a function written in torch (such as SGD)

• Pipeline - directed acyclic graph composed of operations - eg, a training pipeline may retrieve and normalize
data, train an architecture and return the trained model

• Execution - when a pipeline is run, an “execution” is created and reports the status of each operation as it is run
(distributed over a number of worker machines)

• Artifact - an artifact represents some data (either user uploaded or created during an execution)

• Resource - a domain specific model (provided by a DeepForge extension) to be used by a pipeline such as a
neural network architecture

2 Chapter 1. Getting Started

https://github.com/deepforge-dev/deepforge-keras

CHAPTER 2

Quick Start

The easiest way to get started quickly with DeepForge is using docker-compose. First, install docker and docker-
compose.

Next, download the docker-compose file for DeepForge:

wget https://raw.githubusercontent.com/deepforge-dev/deepforge/master/docker-compose.
→˓yml

Then start DeepForge using docker-compose:

docker-compose up

and now DeepForge can be used by opening a browser to http://localhost:8888!

For detailed instructions about deployment installations, check out our deployment installation instructions

3

https://docs.docker.com/engine/installation/
https://docs.docker.com/compose/install/
https://docs.docker.com/compose/install/
http://localhost:8888
getting_started/configuration.rst

deepforge Documentation

4 Chapter 2. Quick Start

CHAPTER 3

Custom Operations

In this document we will outline the basics of custom operations including the operation editor and operation feedback
utilities.

3.1 The Basics

Operations are used in pipelines and have named, typed inputs and outputs. When creating a pipeline, if you don’t
currently find an operation for the given task, you can easily create your own by selecting the New Operation. . .
operation from the add operation dialog. This will create a new operation definition and open it in the operation editor.
The operation editor has two main parts, the interface editor and the implementation editor.

The interface editor is provided on the left and presents the interface as a diagram showing the input data and output
data as objects flowing into or out of the given operation. Selecting the operation node in the operation interface editor
will expand the node and allow the user to add or edit attributes for the given operation. These attributes are exposed
when using this operation in a pipeline and can be set at design time - that is, these are set when creating the given
pipeline. The interface diagram may also contain light blue nodes flowing into the operation. These nodes represent
“references” that the operation accepts as input before running. When using the operation, references will appear
alongside the attributes but will allow the user to select from a list of all possible targets when clicked.

On the right of the operation editor is the implementation editor. The implementation editor is a code editor specially
tailored for programming the implementations of operations in DeepForge. This includes some autocomplete support
for common globals in this context like the deepforge and torch globals. It also is synchronized with the interface
editor and will provide input to the interface editor about unused variables, etc. These errors will present themselves
as error or warning highlights on the data in the interface editor. A section of the implementation is shown below:

trainer = nn.StochasticGradient(net, criterion)
trainer.learningRate = attributes.learningRate
trainer.maxIteration = attributes.maxIterations

print('training for ' .. tostring(attributes.maxIterations) .. ' iterations (max)')
print('learning rate is ' .. tostring(attributes.learningRate))
print(trainer)

(continues on next page)

5

deepforge Documentation

Fig. 1: Editing the “train” operation provided in the “First Steps” section

6 Chapter 3. Custom Operations

deepforge Documentation

Fig. 2: The train operation accepts training data, an architecture and criterion and returns a trained model

(continued from previous page)

-- Adding the error graph
graph = deepforge.Graph('Training Error') -- creating graph feedback
errLine = graph:line('error')
trainer.hookIteration = function(t, iter, currentErr)

errLine:add(iter, currentErr) -- reporting the current error (will update in real
→˓time in DeepForge)
end

trainer:train(trainset)

return {
net = net

}

The “train” operation uses the StochasticGradient functionality from the nn package to perform stochastic
gradient descent. This operation sets all the parameters using values provided to the operation as either attributes or
references. In the implementation, attributes are provided by the attributes variable and provides access to the
user defined attributes from within the implementation. References are treated similarly to operation inputs and are
defined in variables of the same name. This can be seen with the net and criterion variables in the first line.
Finally, operations return a table of their named outputs; in this example, it returns a single output named net, that is,
the trained neural network.

After defining the interface and implementation, we can now use the “train” operation in our pipelines! An example
is shown below.

3.1. The Basics 7

deepforge Documentation

Fig. 3: Using the custom “train” operation in a pipeline

3.2 Operation feedback

Operations in DeepForge can generate metadata about its execution. This metadata is generated during the execution
and provided back to the user in real-time. An example of this includes providing real-time plotting feedback of the
loss function of a model while training. When implementing an operation in DeepForge, this metadata can be created
using the deepforge global.

Detailed information about the available operation metadata types can be found in the reference.

8 Chapter 3. Custom Operations

reference/feedback_mechanisms.rst

deepforge Documentation

Fig. 4: An example graph of the loss function while training a neural network

3.2. Operation feedback 9

deepforge Documentation

10 Chapter 3. Custom Operations

CHAPTER 4

Overview

4.1 DeepForge Component Overview

DeepForge is composed of four main elements:

• Server: Main component hosting all the project information and is connected to by the clients.

• Database: MongoDB database containing DeepForge, job queue for the workers, etc.

• Worker: Slave machine performing the actual machine learning computation.

• Client: The connected browsers working on DeepForge projects.

Of course, only the Server, Database (MongoDB) and Worker need to be installed. If you are not going to execute any
machine learning pipelines, installing the Worker can be skipped.

4.2 Component Dependencies

The following dependencies are required for each component:

• Server (NodeJS v8.11.3)

• Database (MongoDB v3.0.7)

• Worker: NodeJS v8.11.3 (used for job management logic) and Python 3. If you are using the deepforge-keras
extension, you will also need Keras and TensorFlow installed.

• Client: We recommend using Google Chrome and are not supporting other browsers (for now). In other words,
other browsers can be used at your own risk.

4.3 Configuration

After installing DeepForge, it can be helpful to check out configuring DeepForge

11

https://tensorflow.org
getting_started/configuration.rst

deepforge Documentation

12 Chapter 4. Overview

CHAPTER 5

Native Installation

5.1 Dependencies

First, install NodeJS (LTS) and MongoDB. You may also need to install git if you haven’t already.

Next, you can install DeepForge using npm:

npm install -g deepforge

Now, you can check that it installed correctly:

deepforge --version

DeepForge can now be started with:

deepforge start

5.1.1 Database

Download and install MongoDB from the website. If you are planning on running MongoDB locally on the same
machine as DeepForge, simply start mongod and continue to setting up DeepForge.

If you are planning on running MongoDB remotely, set the environment variable “MONGO_URI” to the URI of the
Mongo instance that DeepForge will be using:

MONGO_URI="mongodb://pathToMyMongo.com:27017/myCollection" deepforge start

5.1.2 Server

The DeepForge server is included with the deepforge cli and can be started simply with

13

https://nodejs.org/en/
https://www.mongodb.org/
https://www.mongodb.org/

deepforge Documentation

deepforge start --server

By default, DeepForge will start on http://localhost:8888. However, the port can be specified with the –port option.
For example:

deepforge start --server --port 3000

5.1.3 Worker

The DeepForge worker can be started with

deepforge start --worker

To connect to a remote deepforge instance, add the url of the DeepForge server:

deepforge start --worker http://myaddress.com:1234

5.1.4 Updating

DeepForge can be updated with the command line interface rather simply:

deepforge update

deepforge update --server

For more update options, check out deepforge update –help!

5.2 Manual Installation (Development)

Installing DeepForge for development is essentially cloning the repository and then using npm (node package manager)
to run the various start, test, etc, commands (including starting the individual components). The deepforge cli can still
be used but must be referenced from ./bin/deepforge. That is, deepforge start becomes ./bin/deepforge start (from the
project root).

5.2.1 DeepForge Server

First, clone the repository:

git clone https://github.com/dfst/deepforge.git

Then install the project dependencies:

npm install

To run all components locally start with

./bin/deepforge start

14 Chapter 5. Native Installation

deepforge Documentation

and navigate to http://localhost:8888 to start using DeepForge!

Alternatively, if jobs are going to be executed on an external worker, run ./bin/deepforge start -s locally and navigate
to http://localhost:8888.

5.2.2 DeepForge Worker

If you are using ./bin/deepforge start -s you will need to set up a DeepForge worker (./bin/deepforge start starts a local
worker for you!). DeepForge workers are slave machines connected to DeepForge which execute the provided jobs.
This allows the jobs to access the GPU, etc, and provides a number of benefits over trying to perform deep learning
tasks in the browser.

Once DeepForge is installed on the worker, start it with

./bin/deepforge start -w

Note: If you are running the worker on a different machine, put the address of the DeepForge server as an argument to
the command. For example:

./bin/deepforge start -w http://myaddress.com:1234

5.2.3 Updating

Updating can be done the same as any other git project; that is, by running git pull from the project root. Sometimes,
the dependencies need to be updated so it is recommended to run npm install following git pull.

5.2. Manual Installation (Development) 15

deepforge Documentation

16 Chapter 5. Native Installation

CHAPTER 6

Dockerized Installation

Each of the components are also available as docker containers. This page outlines the running of each of the main
components as docker containers and connecting them as necessary.

6.1 Database

First, you can start the mongo container using:

docker run -d -v /abs/path/to/data:/data/db mongo

where /abs/path/to/data is the path to the mongo data location on the host. If running the database in a
container, you will need to get the ip address of the given container:

docker inspect <container id> | grep IPAddr

The <container id> is the value returned from the original docker run command.

When running mongo in a docker container, it is important to mount an external volume (using the -v flag) to be used
for the actual data (otherwise the data will be lost when the container is stopped).

6.2 Server

The DeepForge server can be started with

docker run -d -v $HOME/.deepforge/blob:/data/blob \
-p 8888:8888 -e MONGO_URI=mongodb://172.17.0.2:27017/deepforge \
deepforge/server

where 172.17.0.2 is the ip address of the mongo container and $HOME/.deepforge/blob is the path to use for
binary DeepForge data on the host. Of course, if the mongo instance is locating at a different location, MONGO_URI
can be set to this address as well. Also, the first port (8888) can be replaced with the desired port to expose on the
host.

17

deepforge Documentation

6.3 Worker

As workers may require GPU access, they will need to use the nvidia-docker plugin. Workers can be created using

nvidia-docker run -d deepforge/worker http://172.17.0.1:8888

where http://172.17.0.1:8888 is the location of the DeepForge server to which to connect.

Note: The deepforge/worker image is packaged with cuda 7.5. Depending upon your hardware and nvidia
version, you may need to build your own docker image or run the worker natively.

18 Chapter 6. Dockerized Installation

CHAPTER 7

Command Line Interface

This document outlines the functionality of the deepforge command line interface (provided after installing deepforge
with npm install -g deepforge).

• Installation Configuration

• Starting DeepForge or Components

• Update or Uninstall DeepForge

• Managing Extensions

7.1 Installation Configuration

Installation configuration can be edited using the deepforge config command as shown in the following exam-
ples:

Printing all the configuration settings:

deepforge config

Printing the value of a configuration setting:

deepforge config worker.dir

Setting a configuration option, such as worker.dir can be done with:

deepforge config worker.dir /some/new/directory

For more information about the configuration settings, check out the configuration page.

19

configuration.rst

deepforge Documentation

7.2 Starting DeepForge Components

DeepForge components, such as the server or the workers, can be started with the deepforge start command.
By default, this command will start all the necessary components to run including the server, a mongo database (if
applicable) and a worker.

The server can be started by itself using

deepforge start --server

The worker can be started by itself using

deepforge start --worker http://154.95.87.1:7543

where http://154.95.87.1:7543 is the url of the deepforge server.

7.3 Update/Uninstall DeepForge

DeepForge can be updated or uninstalled using

deepforge update

DeepForge can be uninstalled using deepforge uninstall

7.4 Managing Extensions

DeepForge extensions can be installed and removed using the deepforge extensions subcommand. Extensions
can be added, removed and listed as shown below

deepforge extensions add https://github.com/example/some-extension
deepforge extensions remove some-extension
deepforge extensions list

20 Chapter 7. Command Line Interface

CHAPTER 8

Configuration

Configuration of deepforge is done through the deepforge config command from the command line interface. To see
all config options, simply run deepforge config with no additional arguments. This will print a JSON representation of
the configuration settings similar to:

Current config:
{

"blob": {
"dir": "/home/irishninja/.deepforge/blob"

},
"worker": {
"cache": {

"useBlob": true,
"dir": "~/.deepforge/worker/cache"

},
"dir": "~/.deepforge/worker"

},
"mongo": {
"dir": "~/.deepforge/data"

}
}

Setting an attribute, say worker.cache.dir, is done as follows

deepforge config worker.cache.dir /tmp

8.1 Environment Variables

Most settings have a corresponding environment variable which can be used to override the value set in the cli’s
configuration. This allows the values to be temporarily set for a single run. For example, starting a worker with a
different cache than set in worker.cache.dir can be done with:

21

deepforge Documentation

DEEPFORGE_WORKER_CACHE=/tmp deepforge start -w

The complete list of the environment variable overrides for the configuration options can be found here.

8.2 Settings

8.2.1 blob.dir

The path to the blob (large file storage containing models, datasets, etc) to be used by the deepforge server.

This can be overridden with the DEEPFORGE_BLOB_DIR environment variable.

8.2.2 worker.dir

The path to the directory used for worker executions. The workers will run the executions from this directory.

This can be overridden with the DEEPFORGE_WORKER_DIR environment variable.

8.2.3 mongo.dir

The path to use for the –dbpath option of mongo if starting mongo using the command line interface. That is, if
the MONGO_URI is set to a local uri and the cli is starting the deepforge server, the cli will check to verify that an
instance of mongo is running locally. If not, it will start it on the given port and use this setting for the –dbpath setting
of mongod.

8.2.4 worker.cache.dir

The path to the worker cache directory.

This can be overridden with the DEEPFORGE_WORKER_CACHE environment variable.

8.2.5 worker.cache.useBlob

When running the worker on the same machine as the server, this allows the worker to use the blob as a cache and
simply create symbolic links to the data (eg, training data, models) to prevent having to even perform a copy of the
data on the given machine.

This can be overridden with the DEEPFORGE_WORKER_USE_BLOB environment variable.

22 Chapter 8. Configuration

https://github.com/deepforge-dev/deepforge/blob/master/bin/envConfig.json

CHAPTER 9

Operation Feedback

Operations can provide real-time graph feedback. In the future, this will be extended to other forms of feedback such
as image feedback.

9.1 Graphs

Real-time graphs can be created using matplotlib:

import matplotlib.pyplot as plt
plt.plot([1, 4, 9, 16, 25])

plt.draw()
plt.show()

The graph can also be configured in regular matplotlib fashion:

plt.title('My First Plot')
plt.xlabel('This is the x-axis')
plt.ylabel('This is the y-axis')

plt.draw()
plt.show()

23

	Getting Started
	Quick Start
	Custom Operations
	Overview
	Native Installation
	Dockerized Installation
	Command Line Interface
	Configuration
	Operation Feedback

