
deepforge Documentation

Brian Broll

Mar 22, 2023

Getting Started

1 Getting Started 1

2 Quick Start 3

3 Interface Overview 5

4 Custom Operations 13

5 Storage and Compute Adapters 19

6 Quick Start 21

7 Overview 23

8 Native Installation 25

9 Introduction 29

10 Creating Pipelines 31

11 Creating Operations 35

12 Creating Neural Networks 39

13 Executing Pipelines 45

14 Viewing Executions 49

15 CIFAR-10 Classifier 53

16 Redshift Estimator 69

17 Tutorial Project - Redshift 87

18 Redshift Estimation 95

19 Command Line Interface 99

20 Configuration 101

i

21 Operation Feedback 103

ii

CHAPTER 1

Getting Started

1.1 What is DeepForge?

Deep learning is a promising, yet complex, area of machine learning. This complexity can both create a barrier to
entry for those wanting to get involved in deep learning as well as slow the development of those already comfortable
in deep learning.

DeepForge is a development environment for deep learning focused on alleviating these problems. Leveraging prin-
ciples from Model-Driven Engineering, DeepForge is able to reduce the complexity of using deep learning while
providing an opportunity for integrating with other domain specific modeling environments created with WebGME.

1.2 Design Goals

As mentioned above, DeepForge focuses on two main goals:

1. Improving the efficiency of experienced data scientists/researchers in deep learning

2. Lowering the barrier to entry for newcomers to deep learning

It is important to highlight that although one of the goals is focused on lowering the barrier to entry, DeepForge is
intended to be more than simply an educational tool; that is, it is important not to compromise on flexibility and
effectiveness as a research/industry tool in order to provide an easier experience for beginners (that’s what forks are
for!).

1.3 Overview and Features

DeepForge provides a collaborative, distributed development environment for deep learning. The development en-
vironment is a hybrid visual and textual programming environment. Higher levels of abstraction, such as creating
architectures, use visual environments to capture the overall structure of the task while lower levels of abstraction,
such as defining custom training functions, utilize text environments. DeepForge contains both a pipelining language

1

https://webgme.org

deepforge Documentation

and editor for defining the high level operations to perform while training or evaluating your models as well as a
language for defining neural networks (through installing a DeepForge extension such as DeepForge-Keras).

1.3.1 Concepts and Terminology

• Operation - essentially a function written in Python (such as training a model, visualizing results, etc)

• Pipeline - directed acyclic graph composed of operations - e.g., a training pipeline may retrieve and normalize
data, train an architecture and return the trained model

• Execution - when a pipeline is run, an “execution” is created and reports the status of each operation as it is run
(distributed over a number of worker machines)

• Artifact - an artifact represents some data (either user uploaded or created during an execution)

• Resource - a domain specific model (provided by a DeepForge extension) to be used by a pipeline such as a
neural network architecture

2 Chapter 1. Getting Started

https://github.com/deepforge-dev/deepforge-keras

CHAPTER 2

Quick Start

There are two ways to give DeepForge a try: visit the public deployment at https://editor.deepforge.org, or spin up
your own deployment locally.

2.1 Connecting to the Public Deployment

As of this writing, registration is not yet open to the public and is only available upon request.

After getting an account for https://editor.deepforge.org, the only thing required to get up and running with DeepForge
is to determine the compute and storage adapters to use. If you already have an account with one of the existing
integrations, then you should be able to use those without any further setup!

If not, the easiest way to get started is to connect your own desktop to use for compute and to use the S3 adapter to
storage data and trained model weights. Connect your own desktop for computation using the following command
(using docker):

docker run -it deepforge/worker:latest --host https://editor.deepforge.org -t <access
→˓token>

where <access token> is an access token for your user (created from the profile page of https://editor.deepforge.org).

After connecting a machine to use for computation, you can start creating and running pipelines w/o input or output
operations! To save artifacts in DeepForge, you will need to connect a storage adapter such as the S3 adapter.

To easily create a custom storage location, minio is recommended. Simply spin up an instance of minio on a machine
publicly accessible from the internet. Providing the public IP address of the machine (along with any configured
credentials) to DeepForge when executing a pipeline will enable you to save any generated artifacts, such as trained
model weights, to the minio instance and register it within DeepForge.

3

https://editor.deepforge.org
../deployment/quick_start.html
../deployment/quick_start.html
https://editor.deepforge.org
../fundamentals/integration.html
https://editor.deepforge.org
https://min.io
https://docs.min.io/docs/minio-quickstart-guide.html

deepforge Documentation

4 Chapter 2. Quick Start

CHAPTER 3

Interface Overview

The DeepForge editor interface is separated into six views for defining all of the necessary features of your desired
project. The details of each interface tab are detailed below. You can switch to any of the views at any time by clicking
the appropriate icon on the left side of the screen. In order, the tabs are:

• Pipelines
• Executions
• Resources
• Artifacts
• Custom Utils
• Custom Serialization

5

deepforge Documentation

3.1 Pipelines

In the initial view, all pipelines that currently exist in the project are displayed. New pipelines can be created using the
floating red button in the bottom right. From this screen, existing pipelines can also be opened for editing, deleted, or
renamed.

3.1.1 Pipeline editing

DeepForge pipelines are directed acyclic graphs of operations, where each operation is an isolated python module.
Operations are added to a pipeline using the red plus button in the bottom right of the workspace. Any operations
that have previously been defined in the project can be added to the pipeline, or new operations can be created when
needed. Arrows in the workspace indicate the passing of data between operations. These arrows can be created by
clicking on the desired output (bottom circles) of the first operation before clicking on the desired input (top circles)
of the second operation. Clicking on a operation also gives the options to delete (red X), edit (blue </>), or change
attributes. Information on the editing of operations can be found in Custom Operations

Pipelines are executed by clicking the yellow play button in the bottom right of the workspace. In the window that
appears, you can name the execution, select a computation platform, and select a storage platform. Computation
platforms specify what the compute resources used for execution of the operations, such as SciServer Compute, will
be. Supported storage platforms, such as endpoints with an S3-compatible API, are used to store intermediate and
output data. The provided storage option will be used for storing both the output objects defined in the pipeline, as
well as all files used in execution of the pipeline.

6 Chapter 3. Interface Overview

custom_operations.rst
https://apps.sciserver.org/compute/

deepforge Documentation

3.1. Pipelines 7

deepforge Documentation

3.2 Executions

This view allows the review of previous pipeline executions. Clicking on any execution will display any plotted data
generated by the pipeline, and selecting multiple executions will display all of the selected plots together. Clicking the
provided links will open either the associated pipeline or a trace of the execution (shown below). The blue icon in the
top right of every operation allows viewing the text output of that operation. The execution trace can be viewed during
execution to check the status of a running job. During execution, the color of a operation indicates its current status.
The possible statuses are:

• Dark gray: Pending Execution

• Light gray: Execution Queued

• Yellow: Execution in Progress

• Orange: Execution Cancelled

• Green: Successfully Finished Execution

• Red: Execution Failed

3.3 Resources

This view shows the resources available for use in pipelines. Different types of resources are made available through
DeepForge extensions and enable the introduction of new concepts into the project. One such example is deepforge-
keras which enables users to make neural networks architectures with a custom visual editor. The created architectures
can then be referenced and used by operations for tasks such as training. From this view, resources can be created,
deleted, and renamed.

As with pipelines, the neural networks are depicted as directed graphs. Each node in the graph corresponds to a single
layer or operation in the network (information on operations can be found on the keras website). Clicking on a layer
provides the ability to change the attributes of that layer, delete the layer, or add new layers before or after the current
layer. Many operations require that certain attributes be defined before use. The Conv2D operation pictured above, for
example, requires that the filters and kernel_size attributes be defined. If these are left as <none>, a visual indicator

8 Chapter 3. Interface Overview

https://github.com/deepforge-dev/deepforge-keras
https://github.com/deepforge-dev/deepforge-keras
https://keras.io/api/

deepforge Documentation

will show that there is an error to help prevent mistakes. In order to ease analysis and development, hovering over any
connecting line will display the shape of the data as it moves between the given layers.

3.4 Artifacts

In this view, you can see all artifacts that are available to your pipelines. These artifacts can be used in any pipeline
through the inclusion of the built in Input operation. Artifacts are pieces of saved data that may be associated with
some Python data type. Any arbitrary type of data may be used for creating an artifact, but if a data type is not specified,
or if a data type is not provided with a custom serialization, the artifact will be treated as a pickle object. If you have
data that cannot be opened with Python’s pickle module, you will need to create a custom serialization as described

3.4. Artifacts 9

https://docs.python.org/3/library/pickle.html

deepforge Documentation

below. Some deepforge extenstions may also support additional data types by default. DeepForge-Keras, for example,
supports saved keras models, in addition to the standard pickle objects, without the need for custom serialization.

A new artifact can be created in one of three ways. First, artifacts are automatically created during the execution of
any pipeline that includes the built-in Output operation. Second, artifacts can be directly uploaded in this view using
the red upload button in the bottom right of the workspace. Using this option will also upload the artifact to the storage
platform specified in the popup window. Finally, artifacts that already exist in one of the storage platforms can be
imported using the blue import button in the bottom right of the workspace.

3.5 Custom Utils

This view allows the creation and editing of custom utility modules. Utilities created here can be imported into any
pipeline operation. For example, the swarp_config_string shown above can be printed out in a operation using the
following code:

import utils.swarp_string as ss
print(ss.swarp_config_string)

3.6 Custom Serialization

In this view, you can create custom serialization protocols for the creation and use of artifacts that are neither python
pickle objects nor keras models. To create a serialization, you will need to define two functions, one for serialization
and one for deserialization. These functions must then be passed as arguments to the deepforge.serialization.register

10 Chapter 3. Interface Overview

deepforge Documentation

function as shown in the commented code above. The serializer and deserializer should have the same signatures as
the dump and load functions respectively from python’s pickle module.

3.6. Custom Serialization 11

https://docs.python.org/3/library/pickle.html

deepforge Documentation

12 Chapter 3. Interface Overview

CHAPTER 4

Custom Operations

In this document we will outline the basics of custom operations including the operation editor and operation feedback
utilities.

4.1 The Basics

Operations are used in pipelines and have named inputs and outputs. When creating a pipeline, if you don’t currently
find an operation for the given task, you can easily create your own by selecting the New Operation. . . operation from
the add operation dialog. This will create a new operation definition and open it in the operation editor. The operation
editor has two main parts, the interface editor and the implementation editor.

The interface editor is provided on the right and presents the interface as a diagram showing the input data and output
data as objects flowing into or out of the given operation. Selecting the operation node in the operation interface editor
will expand the node and allow the user to add or edit attributes for the given operation. These attributes are exposed
when using this operation in a pipeline and can be set at design time - that is, these are set when creating the given
pipeline. The interface diagram may also contain light blue nodes flowing into the operation. These nodes represent
“references” that the operation accepts as input before running. When using the operation, references will appear
alongside the attributes but will allow the user to select from a list of all possible targets when clicked.

The operation editor also provides an interface to specify operation python dependencies. DeepForge uses conda to
manage python dependencies for an operation. This pairs well with the integration of various compute platforms that
available to the user and the only requirement for a user is to have Conda installed in their computing platform. You
can specify operation dependencies using a conda environment file as shown in the diagram below:

To the left of the operation editor is the implementation editor. The implementation editor is a code editor specially
tailored for programming the implementations of operations in DeepForge. It also is synchronized with the interface
editor. A section of the implementation is shown below:

import numpy as np
from sklearn.model_selection import train_test_split
import keras
import time
from matplotlib import pyplot as plt

(continues on next page)

13

https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#create-env-file-manually

deepforge Documentation

Fig. 1: Editing the “TrainValidate” operation from the “redshift” example

(continued from previous page)

import tensorflow as tf

import tensorflow as tf
config = tf.compat.v1.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.compat.v1.Session(config=config)

class TrainValidate():
def __init__(self, model, epochs=10, batch_size=32):

self.model=model
self.batch_size = batch_size
self.epochs = epochs
np.random.seed(32)
return

def execute(self, dataset):
model=self.model
model.summary()
model.compile(optimizer='adam',

loss='sparse_categorical_crossentropy',
metrics=['sparse_categorical_accuracy'])

X = dataset['X']
y = dataset['y']
y_cats = self.to_categorical(y)
model.fit(X, y_cats,

epochs=self.epochs,
batch_size=self.batch_size,
validation_split=0.15,
callbacks=[PlotLosses()])

(continues on next page)

14 Chapter 4. Custom Operations

deepforge Documentation

Fig. 2: The TrainValidate operation accepts training data, a model and attributes for setting the batch size, and the
number of epochs.

Fig. 3: The operation environment contains python dependencies for the given operation.

4.1. The Basics 15

deepforge Documentation

(continued from previous page)

return model.get_weights()

def to_categorical(self, y, max_y=0.4, num_possible_classes=32):
one_step = max_y / num_possible_classes
y_cats = []
for values in y:

y_cats.append(int(values[0] / one_step))
return y_cats

def datagen(self, X, y):
Generates a batch of data
X1, y1 = list(), list()
n = 0
while 1:stash@{1}

for sample, label in zip(X, y):
n += 1
X1.append(sample)
y1.append(label)
if n == self.batch_size:

yield [[np.array(X1)], y1]
n = 0
X1, y1 = list(), list()

class PlotLosses(keras.callbacks.Callback):
def on_train_begin(self, logs={}):

self.i = 0
self.x = []
self.losses = []

def on_epoch_end(self, epoch, logs={}):
self.x.append(self.i)
self.losses.append(logs.get('loss'))
self.i += 1

self.update()

def update(self):
plt.clf()
plt.title("Training Loss")
plt.ylabel("CrossEntropy Loss")
plt.xlabel("Epochs")
plt.plot(self.x, self.losses, label="loss")
plt.legend()
plt.show()

The “TrainValidate” operation uses capabilities from the keras package to train the neural network. This operation
sets all the parameters using values provided to the operation as either attributes or references. In the implementation,
attributes are provided as arguments to the constructor making the user defined attributes accessible from within the
implementation. References are treated similarly to operation inputs and are also arguments to the constructor. This
can be seen with the model constructor argument. Finally, operations return their outputs in the execute method;
in this example, it returns a single output named model, that is, the trained neural network.

After defining the interface and implementation, we can now use the “TrainValidate” operation in our pipelines! An
example is shown below.

16 Chapter 4. Custom Operations

deepforge Documentation

Fig. 4: Using the “TrainValidate” operation in a pipeline

4.2 Operation Feedback

Operations in DeepForge can generate metadata about its execution. This metadata is generated during the execution
and provided back to the user in real-time. An example of this includes providing real-time plotting feedback. When
implementing an operation in DeepForge, this metadata can be created using the matplotlib plotting capabilities.

4.2. Operation Feedback 17

deepforge Documentation

Fig. 5: An example graph of the loss function while training a neural network.

18 Chapter 4. Custom Operations

CHAPTER 5

Storage and Compute Adapters

DeepForge is designed to integrate with existing computational and storage resources and is not intended to be a com-
petitor to existing HPC or object storage frameworks. This integration is made possible through the use of compute and
storage adapters. This section provides a brief description of these adapters as well as currently supported integrations.

5.1 Storage Adapters

Projects in DeepForge may contain artifacts which reference datasets, trained model weights, or other associated
binary data. Although the project code, pipelines, and models are stored in MongoDB, this associated data is stored
using a storage adapter. Storage adapters enable DeepForge to store this associated data using an appropriate storage
resource, such as a object store w/ an S3-compatible API. This also enables users to “bring their own storage” as they
can connect their existing cyberinfrastructure to a public deployment of DeepForge. Currently, DeepForge supports 3
different storage adapters:

1. S3 Storage: Object storage with an S3-compatible API such as minio or AWS S3

2. SciServer Files Service : Files service from SciServer

3. WebGME Blob Server : Blob storage provided by WebGME

5.2 Compute Adapters

Similar to storage adapters, compute adapters enable DeepForge to integrate with existing cyberinfrastructure used
for executing some computation or workflow. This is designed to allow users to leverage their existing HPC or other
computational resources with DeepForge. Compute adapters provide an interface through which DeepForge is able to
execute workflows (e.g., training a neural network) on external machines.

Currently, the following compute adapters are available:

1. WebGME Worker: A worker machine which polls for jobs via the WebGME Executor Framework. Registered
users can connect their own compute machines enabling them to use their personal desktops with DeepForge.

2. SciServer-Compute: Compute service offered by SciServer

19

https://play.min.io
https://aws.amazon.com/s3/
https://sciserver.org
https://webgme.org/
https://github.com/webgme/webgme/wiki/GME-Executor-Framework
https://sciserver.org

deepforge Documentation

3. Server Compute: Execute the job on the server machine. This is similar to the execution model used by Jupyter
notebook servers.

20 Chapter 5. Storage and Compute Adapters

CHAPTER 6

Quick Start

The recommended (and easiest) way to get started with DeepForge is using docker-compose. First, install docker and
docker-compose.

Next, download the docker-compose file for DeepForge:

wget https://raw.githubusercontent.com/deepforge-dev/deepforge/master/docker/docker-
→˓compose.yml

Next, you must decide if you would like authentication to be enabled. For production deployments, this is certainly
recommended. However, if you just want to spin up DeepForge to “kick the tires”, this is certainly not necessary.

6.1 Without User Accounts

Start the docker containers with docker-compose run :

docker-compose --file docker-compose.yml run -p 8888:8888 -p 8889:8889 -e "NODE_
→˓ENV=default" server

6.2 User Authentication Enabled

First, generate a public and private key pair

mkdir -p deepforge_keys
openssl genrsa -out deepforge_keys/private_key
openssl rsa -in deepforge_keys/private_key -pubout > deepforge_keys/public_key
export TOKEN_KEYS_DIR="$(pwd)/deepforge_keys"

Then start DeepForge using docker-compose run:

21

https://docs.docker.com/engine/installation/
https://docs.docker.com/compose/install/

deepforge Documentation

docker-compose --file docker-compose.yml run -v "${TOKEN_KEYS_DIR}:/token_keys" -p
→˓8888:8888 -p 8889:8889 server

Finally, create the admin user by connecting to the server’s docker container. First, get the ID of the container using:

docker ps

Then, connect to the running container:

docker exec -it <container ID> /bin/bash

and create the admin account

./bin/deepforge users useradd admin <admin email> <password> -c -s

After setting up DeepForge (with or without user accounts), it can be used by opening a browser to http://localhost:
8888!

For detailed instructions about deployment installations, check out our deployment installation instructions An exam-
ple of customizing a deployment using docker-compose can be found here.

22 Chapter 6. Quick Start

http://localhost:8888
http://localhost:8888
../getting_started/configuration.rst
https://github.com/deepforge-dev/deepforge/tree/master/.deployment

CHAPTER 7

Overview

7.1 DeepForge Component Overview

DeepForge is composed of four main elements:

• Client: The connected browsers working on DeepForge projects.

• Server: Main component hosting all the project information and is connected to by the clients.

• Compute: Connected computational resources used for executing pipelines.

• Storage: Connected storage resources used for storing project data artifacts such as datasets or trained model
weights.

7.2 Component Dependencies

The following dependencies are required for each component:

• Server (NodeJS LTS)

• Database (MongoDB v3.0.7)

• Client: We recommend using Google Chrome and are not supporting other browsers (for now). In other words,
other browsers can be used at your own risk.

7.3 Configuration

After installing DeepForge, it can be helpful to check out configuring DeepForge

23

getting_started/configuration.rst

deepforge Documentation

24 Chapter 7. Overview

CHAPTER 8

Native Installation

8.1 Dependencies

First, install NodeJS (LTS) and MongoDB. You may also need to install git if you haven’t already.

Next, you can install DeepForge using npm:

npm install -g deepforge

Now, you can check that it installed correctly:

deepforge --version

After installing DeepForge, it is recommended to install the deepforge-keras extension which provides capabilities for
modeling neural network architectures:

deepforge extensions add deepforge-keras

DeepForge can now be started with:

deepforge start

8.1.1 Database

Download and install MongoDB from the website. If you are planning on running MongoDB locally on the same
machine as DeepForge, simply start mongod and continue to setting up DeepForge.

If you are planning on running MongoDB remotely, set the environment variable “MONGO_URI” to the URI of the
Mongo instance that DeepForge will be using:

MONGO_URI="mongodb://pathToMyMongo.com:27017/myCollection" deepforge start

25

https://nodejs.org/en/
https://www.mongodb.org/
https://github.com/deepforge-dev/deepforge-keras
https://www.mongodb.org/

deepforge Documentation

8.1.2 Server

The DeepForge server is included with the deepforge cli and can be started simply with

deepforge start --server

By default, DeepForge will start on http://localhost:8888. However, the port can be specified with the –port option.
For example:

deepforge start --server --port 3000

8.1.3 Worker

The DeepForge worker (used with WebGME compute) can be used to enable users to connect their own machines to
use for any required computation. This can be installed from https://github.com/deepforge-dev/worker. It is recom-
mended to install Conda on the worker machine so any dependencies can be automatically installed.

8.1.4 Updating

DeepForge can be updated with the command line interface rather simply:

deepforge update

deepforge update --server

For more update options, check out deepforge update –help!

8.2 Manual Installation (Development)

Installing DeepForge for development is essentially cloning the repository and then using npm (node package manager)
to run the various start, test, etc, commands (including starting the individual components). The deepforge cli can still
be used but must be referenced from ./bin/deepforge. That is, deepforge start becomes ./bin/deepforge start (from the
project root).

8.2.1 DeepForge Server

First, clone the repository:

git clone https://github.com/dfst/deepforge.git

Then install the project dependencies:

npm install

To run all components locally start with

./bin/deepforge start

and navigate to http://localhost:8888 to start using DeepForge!

Alternatively, if jobs are going to be executed on an external worker, run ./bin/deepforge start -s locally and navigate
to http://localhost:8888.

26 Chapter 8. Native Installation

https://conda.io/en/latest/

deepforge Documentation

8.2.2 Updating

Updating can be done the same as any other git project; that is, by running git pull from the project root. Sometimes,
the dependencies need to be updated so it is recommended to run npm install following git pull.

8.3 Manual Installation (Production)

To deploy a deepforge server in a production environment, follow the following steps. These steps are for using a
Linux server and if you are using a platform other than Linux, we recommend using a dockerized deployment.

1. Make sure you have a working installation of Conda in your server.

2. Clone this repository to your production server.

git clone https://github.com/deepforge-dev/deepforge.git

3. Install dependencies and add extensions:

cd deepforge && npm install
./bin/deepforge extensions add deepforge-keras

2. Generate token keys for user-management (required for user management).

chmod +x utils/generate_token_keys.sh
./utils/generate_token_keys.sh

Warning: The token keys are generated in the root of the project by default. If the token keys are stored in the
project root, they are accessible via /extlib, which is a security risk. So, please make sure you move the created
token keys out of the project root.

3. Configure your environment variables:

export MONGO_URI=mongodb://mongo:port/deepforge_database_name
export DEEPFORGE_HOST=https://url.of.server
export DEEPFORGE_PUBLIC_KEY=/path/to/public_key
export DEEPFORGE_PRIVATE_KEY=/path/to/private_key

4. Add a site-admin account by using deepforge-users command:

./bin/deepforge-users useradd -c -s admin_username admin_email admin_password

5. Now you should be ready to deploy a production server which can be done using deepforge command.

NODE_ENV=production ./bin/deepforge start --server

Note: The default port for a deepforge server is 8888. It can be changed using the option -p in the command above.

8.3. Manual Installation (Production) 27

https://conda.io/en/latest/

deepforge Documentation

28 Chapter 8. Native Installation

CHAPTER 9

Introduction

This tutorial provides detailed instructions for creating a complete DeepForge project from scratch. The motivating
examples for this walkthrough will be a simple image classification task using CIFAR-10 as our dataset and a more
complex astronomical redshift estimation task using Sloan Digital Sky Survey as our dataset.

The overall process of creating projects is centered around the creation of data processing pipelines that will be exe-
cuted to generate the data, visualizations, models, etc. that we need. This guide begins with a detailed walkthrough
on how to create pipelines and all their constituent parts. After this introductory walkthrough will be detailed walk-
throughs on how to create a pair of useful pipelines using the motivating examples.

29

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.sdss.org/dr13/

deepforge Documentation

30 Chapter 9. Introduction

CHAPTER 10

Creating Pipelines

From the home view in the Pipelines tab, you are presented with a list of the pipelines that have already been created.
Clicking on any of these pipelines will allow editing of that pipeline. To create a new, empty pipeline, click on the red
button in the bottom right corner of the workspace.

The basic unit of work in a pipeline is the operation. Operations can be added using the red button in the bottom right
corner of the workspace.

After an operation has been added, the attributes of that operation can be changed by clicking on the operation and
then clicking on the current value of that attribute.

Operation inputs and outputs are represented by blue circles that are visible after clicking on the operation. Blue
circles on the top on the operation represent inputs, while circles on the bottom represent outputs. The red X circle
can be clicked to remove an operation from the pipeline. This does not remove it from the set of available operations.
The </> icon will open the operation editor view. Holding alt while clicking this icon will instead create a copy of the
operation and open the new copy’s editor.

31

deepforge Documentation

32 Chapter 10. Creating Pipelines

deepforge Documentation

Operations can be connected by clicking on an input or output of an operation before clicking on an output or input
respectively of another operation. All input and output connections are optional, though missing outputs may give
errors depending upon the operation’s internal logic.

33

deepforge Documentation

34 Chapter 10. Creating Pipelines

CHAPTER 11

Creating Operations

When adding an operation to a pipeline, new operations can be created by clicking the New Operation option. This
will open the operation editor for the new operation.

This editor can also be reached for existing operations by clicking the </> icon when editing an operation’s attributes.

This editor has two primary views for editing the operation. The left view allows editing the underlying code of the
operation directly. The right view provides a graphical means of adding inputs, outputs, and attributes.

35

deepforge Documentation

11.1 Editing the Operation Interface

Clicking on the operation in the right view will allow editing the operation interface. The operation interface consists
of design time parameters (attributes and references) as well as inputs and outputs generated at runtime.

Attributes can be added by clicking the New Attribute label, which will open a dialog box where you can define the
name, type, default value, and other metadata about that attribute. This dialog box can be viewed again to edit the
attribute by clicking on the name of the attribute in the right-side view.

Inputs and outputs can be added using the blue arrow icons. Any number of inputs and outputs can be added to an
operation, but each should be given a unique name.

Using the plus icon, referencess to resources can be added to the operation. These resources will usually be some form
of neural network. As with inputs and outputs, any number of resources can be added to an operation.

36 Chapter 11. Creating Operations

deepforge Documentation

The paint brush icon allows editing the color of the operation, but this is purely aesthetic and does not affect the
operation’s underlying logic.

11.2 Implementing the Operation

In the left-side view, the underlying logic of the operation is implemented using Python. The code here can be edited
freely. All operations are defined by a class with the same name as the operation. This class has two primary functions
associated with it. The first is the __init__ function, which will appear automatically when creating the operation’s
first attribute. This function will run when the operation is initialized and is primarily used for the creation of class
variables and the processing of attributes. Note that operation attributes will not be accessible from other functions
and must be assigned to a class variable in this function to be utilized elsewhere. The second primary function is the
execute function. This is the function that is executed when the operation is running. Any number of other classes
and functions can be created in the code editor, but they will not be executed if they are not called within the execute
function. The outputs of the execute function will also be the outputs of the operation.

11.2. Implementing the Operation 37

deepforge Documentation

11.3 Importing Libraries

Python libraries can be used within an operation by importing them, which is usually done above the operation class.
Any library that is installed on the compute backend’s python environment can be imported as normal, but more niche
libraries that are available through pip or anaconda need to be specified as dependencies for the operation by clicking
the Environment tab on the right side. The dependencies described here should be defined using the same syntax as in
a conda environment file.

38 Chapter 11. Creating Operations

https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#creating-an-environment-file-manually

CHAPTER 12

Creating Neural Networks

This page will guide you through the steps needed to create a neural network architecture for use in pipelines.

12.1 Importing Resource Libraries

Neural networks and other models can be created from the Resources tab on the sidebar. Before any models can be
created in this tab, you must import the associated library into the project using the red floating button in the bottom
right of the workspace.

In the box that appears, you will see a list of libraries that are available for import.

39

deepforge Documentation

Clicking the download icon will install that library and allow creation of associated models. The keras library, for
instance, allows for the creation of neural network models.

12.2 Creating a New Architecture

After any library has been imported, new models can be created by hovering over the import library button and
clicking the floating blue button that appears. This will generate a blank model and automatically open up that model’s
workspace.

Clicking anywhere in the workspace will add the first layer of the architecture, which will always be an input layer.
Just as with pipelines, these architectures are represented by a flowchart, with each node representing a single layer in
the neural network.

40 Chapter 12. Creating Neural Networks

deepforge Documentation

12.3 Editing Network Layers

Clicking on a layer allows for changing the parameters of that layer. Many of these parameters can be left undefined,
but many layers require that some specific parameters be given. If a layer has not been supplied with the necessary
parameters, or if there is some other error encountered at that layer when building the network, the layer will be
highlighted with a red border. Hovering the mouse over the layer will reveal the error. Hovering over a newly created
Input layer, for example, shows us that the layer requires that either the shape or batch_shape parameter must be
defined.

Some parameters may not be immediately clear on their effects from the name alone. For unfamiliar parameters,
hovering over the name of the parameter will reveal a short description.

In addition, clicking on the ? icon in the top right of the expanded layer will display documentation on the layer as a
whole, including descriptions of all available parameters.

12.4 Adding Additional Layers

To add additional layers, you can click on the arrow icons on the top or bottom of any layer. The icon should become
a + icon and clicking again will open a menu from which the desired layer type can be chosen.

12.3. Editing Network Layers 41

deepforge Documentation

Layers can also be removed from the network by expanding the layer and clicking the red X icon in the top left. Two
layers that already exist in the network can also be linked by clicking on the output icon on one layer and the input
icon on another. A given layer can have any number of other layers as inputs or outputs. Some layers, such as the
Dense layer, however, only expect one input and will give an error when multiple inputs are detected.

It is optional, though recommended, that the network be concluded with an Output layer. A network may include
multiple outputs, in which case all outputs must be given an Output layer. If no Output layer is included, the last
layer in the network will be treated as the sole output.

12.5 Connections Between Layers

When two layers are connected, they will be joined by a black arrow that indicates the flow of data through the network.
Hovering over these arrows will reveal the shape of the data, which can help with analyzing the network to ensure that
the data is being transformed as desired.

Connections can also be removed and layers separated by clicking on the unwanted arrow and then clicking on the red
X icon that appears.

12.6 Exporting Architectures

With keras models, another feature exists to export the model as python code. Clicking the red arrow button in the
bottom right of the workspace will display a window generating the code. After making any optional changes to the
configuration, clicking run will generate the code.

After successful generation, hovering over the red arrow button and clicking on the floating gray list button will provide
a list of all exported architectures.

42 Chapter 12. Creating Neural Networks

deepforge Documentation

12.6. Exporting Architectures 43

deepforge Documentation

Clicking on Details will provide some metadata about the export, as well as a link to download the generated file. This
file can then be incorporated into a python project.

44 Chapter 12. Creating Neural Networks

CHAPTER 13

Executing Pipelines

This page will guide you through the steps needed to execute a finished pipeline.

13.1 Executing within DeepForge

Finished pipelines can be conveniently executed from within DeepForge. To do so, navigate to the desired pipeline’s
workspace, hover over the red + button in the bottom right, and click on the blue arrow button. This will open a
dialog box for defining how to execute the pipeline. The configuration options are split into several sections. Once all
information has been provided, clicking the blue Run button will begin execution. The information provided can also
be saved for future executions by checking the box in the bottom left.

13.1.1 Basic Options

Here you will define the name of the execution. Execution names are unique identifiers and cannot be repeated. In
the case that a name is given that has already been used for that project, an index will be added to the pipeline name
automatically (i.e. test becomes test_2). Upon starting execution, the execution name will also be added to the project
version history as a tag.

The pipeline can also be chosen to run in debug mode here. This will allow editing the operations and re-running
the pipelines with the edited operations after creation. Alternatively, the execution will only use the version of each
operation that existed when the pipeline was first executed. This can be helpful when creating and testing pipelines
before deployment.

13.1.2 Credentials for Pipeline Inputs

Pipeline inputs may be stored in different storage backends, such as S3 or SciServer Files, which may in turn require
authorization for access. If authorization is required, this section of the dialog will be populated with input fields for
the expected credentials. If no input artifacts are used in the pipeline, this section will not be present.

In the figure below, the pipeline inputs are stored using SciServer Files so a dropdown containing the linked SciServer
accounts is shown.

45

deepforge Documentation

46 Chapter 13. Executing Pipelines

deepforge Documentation

13.1.3 Compute Options

In this section, you will select from the available compute backends. Each compute backend may require additional
information, such as login credentials or computation resources that should be used.

In the figure below, SciServer Compute is selected. SciServer Compute requires the user to select a linked account and
a compute domain; this example is using the account, brollb, on the “Small Jobs Domain”.

13.1.4 Storage Options

Here, the storage backend must be chosen from the available options. Each backend may require additional input,
such as login credentials and the desired storage location. This storage backend and location will be where all files
created during execution will be stored. This will include both files used during execution, such as data passed between
operations, as well as artifacts created from Output operations.

The figure below shows an example using SciServer Files. Like SciServer Compute, the user must first select the
linked account to use. Then the user must provide the volume and volume pool to be used. In this example, the
“brollb” account is used with the “brollb/deepforge_data” volume on the “Storage” volume pool. More information
can be found in the SciServer User Guide.

13.2 Export Pipeline

If desired, pipelines can be exported as a command line utility for execution locally. Hovering over the red + icon in
the pipeline’s workspace and clicking the yellow export button that appears will open a dialog box for exporting the
pipeline.

The dialog will prompt the user to select which of the pipeline inputs should be treated as static artifacts. A static
artifact is an input of the pipeline that should be fixed to the current value. For example, if you have an evaluation
pipeline which accepts two inputs, testing data and a model, you may want to set the model as a static artifact to export
a pipeline which allows you to easily evaluate the model on other datasets. Alternatively, setting the testing data as a
static artifact would allow you to evaluate different models on the same data. Any static artifacts will require the login
credentials for the backend and account where the artifact is stored so it can be retrieved and bundled in the exported
zip archive.

13.2. Export Pipeline 47

https://www.sciserver.org/wp-content/uploads/2021/09/sciserver-how-to-2021-09-22.pdf

deepforge Documentation

Clicking the blue Run button in the bottom right will generate the execution files for the pipeline and automatically
download them in a zip file. In this zip folder are all the files normally generated for execution. The simplest way to
execute this pipeline is to run the top-level main.py file.

48 Chapter 13. Executing Pipelines

CHAPTER 14

Viewing Executions

This page will guide you through monitoring the execution of pipelines and viewing the output of finished executions.

14.1 Monitoring Executions

After execution has been started through DeepForge, the status of an execution can be checked using numerous meth-
ods.

14.1.1 Viewing Execution Status

While in the workspace for a pipeline, the bottom left corner shows a list of all executions associated with the pipeline.
Clicking on the name of an execution will open the status tracker for that execution.

49

deepforge Documentation

An alternative method of getting to this screen is to go to the Executions tab for a list of all executions for the current
project. In this view, clicking the name of the desired execution will also open the status tracker.

In the status tracker view, the current status for the execution is displayed on an operation level. Each operation is
colored based upon its status, with the following possible states:

• Gray - Awaiting Execution

• Yellow - Currently Executing

• Green - Execution Finished Successfully

• Orange - Execution Cancelled

• Red - Error Encountered During Execution

Also in this view, clicking on an operation will reveal the attribute values used for this execution. Clicking the blue
monitor icon in the top right of a selected operation will open the console output for that operation.

50 Chapter 14. Viewing Executions

deepforge Documentation

14.1.2 Viewing the Compute Dashboard

In the top left of the webpage, clicking the DeepForge logo will open the DeepForge main dropdown menu. In this
menu is an option named View Compute.

This option opens a dialog box that displays the current execution status of the connected compute backends. Each
backend will have its own tab with information specific to that backend. The SciServer Compute tab includes a direct
link to SciServer’s Compute Dashboard, where the status and output of current and past executions can be viewed.

14.2 Viewing Execution Output

Execution output can be viewed in one of two major ways. Textual output that is printed to the console can be viewed
by going to the execution status tracker, selecting the operation that produces the desired output, and clicking on the
blue monitor icon in the top right of the operation. For operations generating matplotlib figures, a set of buttons in the
bottom left will allow swapping between console and matplotlib figures.

Graphical output, which will generally by generated using a graphical library like Matplotlib, can be viewed from the
Executions tab on the sidebar. Beside each execution is a checkbox. Activating a checkbox will display the graphical
output generated during that execution. Selecting multiple boxes will display the output from all selected executions
together.

14.2. Viewing Execution Output 51

https://matplotlib.org/

deepforge Documentation

52 Chapter 14. Viewing Executions

CHAPTER 15

CIFAR-10 Classifier

This guide provides step-by-step instructions on how to create full pipeline for training and evaluating a simple image
classification neural network. This example uses the CIFAR-10 dataset. This guide assumes that the reader has a
basic understanding of the DeepForge interface. New users are recommended to review the step-by-step guides before
attempting the process described in this guide.

15.1 Pipeline Overview

This guild will give a step-by-step process beginning with a new, blank pipeline (shown above) and ending with the
pipeline shown below that will create, train, and evaluate a CIFAR-10 classifier.

15.2 GetCifarData Operation

To create your first operation, click on the floating red button in the bottom right of the pipeline editor workspace, and
click on the New Operation option that appears.

53

https://www.cs.toronto.edu/~kriz/cifar.html
introduction.rst

deepforge Documentation

This operation provides the pipeline with the training and testing data that will be used by later operations. In many
cases, this will be accomplished with Input operations, but it may be preferable in some cases to retrieve the data
programmatically.

The first step in any operation should be giving it a name, defining its attributes, and defining its inputs and outputs.
These steps are best performed in the right-side panel in the operation editor.

Our GetCifarData operation will produce four outputs, representing the images and labels from the training and testing
sets. This operation does not require any inputs or attributes.

The next step in creating any operation is defining its implementation. This is performed in the left panel using the
python programming language. Every operation is defined as a python class that must include an execute function.
Any arbitrary code can be included and run in association with this operation, but an execute function must be included
and external code will only run if called from within the execute function.

CIFAR-10 is a very common benchmarking dataset. As such, the common keras neural network python library pro-
vides a simple method for directly downloading and using the data. The code for doing this is relatively straightforward
and is shown below.

from keras.datasets import cifar10

class GetCifarData():

def execute(self):
print('Retrieving CIFAR-10 train_imgs')

Retrieve CIFAR-10 data. load_data() returns a 2-tuple of 2-tuples. The
left hand side decomposes these tuples into four separate variables.
(train_imgs,train_labels),(test_imgs,test_labels) = cifar10.load_data()

print('CIFAR-10 train_imgs successfully retrieved')
print('Training set shape: {shape}'.format(shape=train_imgs.shape))
print('Testing set shape: {shape}'.format(shape=test_imgs.shape))

return train_labels, test_imgs, test_labels, train_imgs

54 Chapter 15. CIFAR-10 Classifier

deepforge Documentation

When finished, return to the pipeline and use the add operation button again to add the new operation to the pipeline.
At this point, you should have a single operation with four outputs, as shown below:

15.3 TrainCifar Operation

The next operation will create and train the neural network classifier.

Once again, our first step after naming is to define the inputs and outputs of the operation. Unlike the previous
operation, two attributes should be added: batch_size and epochs. Batch size is the number of training samples that
the model will be trained on at a time and epochs is the number of times that each training sample will be given to the
model. Both are important hyperparameters for a neural network. For this guide, the attributes are defined as shown
below, but the exact number used for default values can be changed as desired by the reader.

This operation will require two inputs (images and labels) and a neural network architecture. Finally, the operation
produces one output, which is the trained classifier model. After all inputs, outputs, and attributes have been added,
the structure of the operation should appear similar to the following:

The code for this operation follows the standard procedure for creating and training a Keras network. The code for this
process is shown below. Note that the attributes must be assigned as class variables in the __init__ function in order
to be used in the execute function. Also note that we do not need to import the keras library explicitly here. This is
because the architecture object already comes with all the currently needed keras functions attached.

15.3. TrainCifar Operation 55

deepforge Documentation

class TrainCifar():

Runs when preparing the operation for execution
def __init__(self, architecture, batch_size=32, epochs=20):

print("Initializing Trainer")

Saves attributes as class variables for later use
self.arch = architecture
self.epochs = epochs
self.batch_size = batch_size
return

Runs when the operation is actually executed
def execute(self, images, labels):

print("Initializing Model")

Creates an instance of the neural network architecure. Other
losses and optimizers can be used as desired
self.arch.compile(loss='sparse_categorical_crossentropy',

optimizer='adam',
metrics=['sparse_categorical_accuracy'])

print("Model Initialized Successfully")

print("Beginning Training")
print("Training images shape:", images.shape)
print("Training labels shape:", labels.shape)

Train the model on the given inputs (images) and outputs (labels)
using the specified training options.
self.arch.fit(images,

labels,
batch_size=self.batch_size,
epochs=self.epochs,
verbose=2)

print("Training Complete")

Saves the model in a new variable. This is necessary so that the
output of the operation is named 'model'
model = self.arch

return model

After the operation is fully defined, it needs to be added to the workspace and connected to the GetCifarData operation
as shown below. Specifically, the train_images and train_labels outputs from GetCifarData should be connected to
the images and labels inputs to TrainCifar respectively. Hovering over the circles representing each input or output
will display the full name of that element. This should help to ensure that the correct inputs and outputs are matched
together.

Note that the architecture selected from within the pipeline editor until after the Neural Network Architecture section
of this guide is completed.

56 Chapter 15. CIFAR-10 Classifier

deepforge Documentation

15.4 Neural Network Architecture

This section will describe how to create a simple, but effective, Convolutional Neural Network for classifying CIFAR-
10 images. In particular, this section gives instructions on creating a slightly simplified VGG network. The basic
structure of this network is a series of four feature detection blocks, followed by a densely connected classifier block.

For specifics on how to create a new network how to use the neural network editor interface, consult the Creating
Neural Networks walkthrough.

Beginning from a blank network, the first step when building a network is to create an Input layer by clicking anywhere
on the workspace.

For reference during design, the full architecture can be found here.

This Input layer requires that either the shape or batch_shape attributes be defined. Because our data is composed of
32*32 pixel RGB images, the shape of our input should be (32,32,3).

The four feature detector blocks are each composed of two Conv2D layers followed by a MaxPooling2D layer. The
settings for the first Conv2D and MaxPooling2D layers are shown below.

Every Conv2D layer requires that the filters and kernel_size attributes be defined. Each Conv2D layer in this network
will use a kernel_size (window size) of (3,3), a stride of (1,1), and will use ReLU as the activation function. They
should all also use same as the padding so that the size of the input does not change during convolution. For the first
pair of Conv2D layers, the number of filters will be 32.

Every MaxPooling2D layer requires that the pool_size (window size) attribute be defined. In this network, all Max-
Pooling2D layers will use a pool_size of (2,2), a stride of (2,2), and padding set to valid. These settings will result in
the size of the image being cut in half at every pooling.

15.4. Neural Network Architecture 57

https://neurohive.io/en/popular-networks/vgg16/
creating-neural-networks.rst
creating-neural-networks.rst
images/vgg-full.png

deepforge Documentation

A total of four of these convolutional blocks should be created in sequence. The only difference between each block
is that the number of filters used in the Conv2D layers in each block should double after each pooling. In other words,
the value of filters should be 32 for the first Conv2D layer, 64 for the third Conv2D layer, 128 for the fifth, and so on.

After the last convolutional block comes the classifier block. The first layer in this block is a Flatten layer, which
converts the convolved image into a 1D vector that can be fed into the following Dense layers. The Flatten layer has
no attributes to change.

There are a total of three Dense layers in this classifier, with the first two using the same attribute values. Every Dense
layer requires that the units (output length) attribute be defined.

For the first two Dense layers, the number of units used will be 2048, and the activation function used will be ReLU,
as shown below.

The final Dense layer will actually provide the output probability density function for the model. As such, the number
of units should be the number of categories in the data (in this case 10). This last layer also uses the softmax activation
function, which ensures that the output is a vector whose sum is 1.

Optionally, an Output layer may be added after the final Dense layer. This layer explicitly marks the output of a
model, but may be excluded when there is only one output. When there is only one output, such as in this network,
the lowest layer in the model will be assumed to be the output layer.

15.5 PredictCifar Operation

This operation uses the model created by TrainCifar to predict the class of a set on input images. This operation has
no attributes, takes a model and images as input and produces a set of predicted labels (named pred_labels), resulting

58 Chapter 15. CIFAR-10 Classifier

deepforge Documentation

15.5. PredictCifar Operation 59

deepforge Documentation

in the following structure:

The code for this operation is short and straightforward with only one peculiarity. The predict function does not
provide a prediction directly, instead providing a probability density function (pdf) over the available classes. For
example, a CIFAR-10 classifier’s output for a single input may be [0, 0.03, 0.9, 0.02, 0, 0, 0.05, 0, 0, 0], which
indicates that the model is predicting that the likelihood that the image falls into each category is 0% for category 1,
3% for category 2, 90% for category 3, and so on. This requires taking the argmax of every output of the model to
determine which class has been ruled the most likely.

import numpy as np

class PredictCifar():

def execute(self, images, model):
print('Predicting Image Categories')

Predicts the PDF for the input images
pred_labels = model.predict(images)

Converts PDFs into scalar predictions
pred_labels = np.argmax(pred_labels, axis=1)

print('Predictions Generated')

return pred_labels

After the operation is fully defined, it needs to be added to the workspace and connected to the previous operations as
shown below. Specifically, the test_images outputs from GetCifarData and the model output from TrainCifar should
be connected to the images and model inputs to PredictCifar respectively.

15.6 EvalCifar Operation

This operation evaluates the outputs from the classifier and produces a confusion matrix that could be helpful for
determining where the shortcomings of the model lie.

60 Chapter 15. CIFAR-10 Classifier

https://en.wikipedia.org/wiki/Probability_density_function

deepforge Documentation

This operation requires no attributes and produces no output variables. It requires two inputs in the form of true_labels
and pred_labels. The structure of this operation is shown below:

With this operation, the code becomes a bit more complex as we build the visualization with the tools provided by
the matplotlib.pyplot library. The code below is annotated with comments describing the purpose of all graphing
commands. Also of note is that the expected input true_labels is a 2-dimensional array, where the second dimension
is of length 1. This is because of a quirk of keras that requires this structure for training and automatic evaluation. To
ease calculations, the first step taken is to flatten this array to one dimension.

import matplotlib.pyplot as plt
import numpy as np

class EvalCifar():

def execute(self, pred_labels, true_labels):

Reduces the dimensionality of true_labels by 1
ex. [[1],[4],[5],[2]] becomes [1, 4, 5, 2]
true_labels = true_labels[:,0]

Builds a confusion matrix from the lists of labels
cm = self.buildConfustionMatrix(pred_labels, true_labels)

#normalize values to range [0,1]
cm = cm / cm.sum(axis=1)

Calculates the overall accuracy of the model
acc = (# correct) / (# samples)

(continues on next page)

15.6. EvalCifar Operation 61

https://matplotlib.org/tutorials/introductory/pyplot.html

deepforge Documentation

(continued from previous page)

acc = np.trace(cm) / np.sum(cm)

Display the confusion matrix as a grayscale image, mapping the
intensities to a green colorscale rather than the default gray
plt.imshow(cm, cmap=plt.get_cmap('Greens'))

Adds a title to the image. Also reports accuracy below the title
plt.title('CIFAR-10 Confusion Matrix\naccuracy={:0.3f}'.format(acc))

Labels the ticks on the two axes (placed at positions [0,1,2,...,9]) with
the category names
bins = np.arange(10)
catName = ['plane','car','bird',

'cat','deer','dog','frog',
'horse','ship','truck']

plt.xticks(bins, catName, rotation=45)
plt.yticks(bins, catName)

Determines value at the center of the color scale
mid = (cm.max() + cm.min()) / 2

for i in range(10):
for j in range(10):

Prints the value of each cell to three decimal places.
Colors text so that white text is printed on dark cells
and black text on light cells
plt.text(j, i, '{:0.3f}'.format(cm[i, j]),

ha='center', va='center',
color='white' if cm[i, j] > mid else 'black')

Labels the two axes
plt.ylabel('True label')
plt.xlabel('Predicted label')

plt.tight_layout()

Displays the plot
plt.show()

def buildConfustionMatrix(self, pred_labels, true_labels):
Creates an empty matrix of size 10 x 10
mat = np.zeros((10,10))

Computes count of times that image with true label t is
assigned predicted label p
for p, t in zip(pred_labels, true_labels):

mat[t][p] += 1

return mat

After the operation is fully defined, it needs to be added to the workspace and connected to the previous operations as
shown below. Specifically, the test_labels outputs from GetCifarData and the pred_labels output from PredictCifar
should be connected to the true_labels and pred_labels inputs to EvalCifar respectively.

62 Chapter 15. CIFAR-10 Classifier

deepforge Documentation

15.7 ViewCifar Operation

This operation displays a random subset of images, along with the predicted and actual categories in which those
images belong. Such a visualization might be helpful for seeing what kind of images are being misclassified and for
what reason.

This operation includes an attribute num_images for specifying the number of images that should be drawn from the
testing set and displayed. As with the attributes in TrainCifar, this attribute should be given a type of integer and will
be given the default value of 16.

This operation produces no outputs and requires three inputs: the images, the associated true labels, and the associated
predicted labels. The overall structure is shown.

As with the previous operation, the code for this operation gets slightly complicated and has been annotated with
comments describing each command.

from matplotlib import pyplot as plt
import numpy as np
import math

(continues on next page)

15.7. ViewCifar Operation 63

deepforge Documentation

(continued from previous page)

class ViewCifar():
def __init__(self, num_images=16):

self.num_images = num_images

return

def execute(self, pred_labels, true_labels, images):
Reduces the dimensionality of true_labels by 1
ex. [[1],[4],[5],[2]] becomes [1, 4, 5, 2]
true_labels = true_labels[:,0]

Chooses a random selection of indices representing the chosen images
orig_indices = np.arange(len(images))
indices = np.random.choice(orig_indices, self.num_images, replace=False)

Extracts the images and labels represented by the chosen indices
images = np.take(images, indices, axis=0)
pred_labels = np.take(pred_labels, indices, axis=0)
true_labels = np.take(true_labels, indices, axis=0)

Calculates the number of rows and columns needed to arrange the images in
as square of a shape as possible
num_cols = math.ceil(math.sqrt(self.num_images))
num_rows = math.ceil(self.num_images / num_cols)

Creates a collection of subplots, with one cell per image
fig, splts = plt.subplots(num_rows, num_cols, sharex=True, sharey=True)

catName = ['plane','car','bird',

(continues on next page)

64 Chapter 15. CIFAR-10 Classifier

deepforge Documentation

(continued from previous page)

'cat','deer','dog','frog',
'horse','ship','truck']

for i in range(self.num_images):

Determines the current row and column location
col = i % num_cols
row = i // num_cols

Displays the current image
splts[row,col].imshow(images[i])
splts[row,col].axis('off')

Retrieves the text label equivalent of the numerical labels
p_cat = catName[pred_labels[i]]
t_cat = catName[true_labels[i]]

Displays the category labels, with the true label colored green and in
the top-left corner and the predicted label colored red and in the
top-right corner
splts[row,col].text(8,0,t_cat,ha='center',va='bottom',color='green')
splts[row,col].text(24,0,p_cat,ha='center',va='bottom',color='red')

Displays the figure
plt.show()

After the operation is fully defined, it needs to be added to the workspace and connected to the previous operations
as shown below. Specifically, the test_labels outputs from GetCifarData, the test_images from GetCifarData, and
the pred_labels output from PredictCifar should be connected to the true_labels, images, and pred_labels inputs to
ViewCifar respectively.

With this, we have a full pipeline ready for execution.

15.8 Execution and Results

With the pipeline fully prepared, it is time to execute the pipeline. To do this, go to the pipeline editor workspace,
hover over the red Add Operation button and click the floating blue Execute Pipeline button

A dialog box will open where the settings for the current execution must be defined. All inputs are required are detailed
below.

15.8. Execution and Results 65

deepforge Documentation

66 Chapter 15. CIFAR-10 Classifier

deepforge Documentation

The Basic Options section includes two settings. The first is the name to be used for identifying the execution. An
execution’s name must be unique within the project and if a name is given here that has already been used for an
execution in the same project, a number will be appended to the given name automatically. The debug option allows
for individual operations to be edited and rerun after execution. This is useful during pipeline development and allows
for easier debugging or tuning.

The Compute Options section allows configuration of the compute backend to be used for execution. The specific
inputs required here will vary with the selected compute backend. For instance, the SciServer Compute backend
requires login credentials and the selection of a compute domain.

The Storage Options section allows configuration of the storage backend to be used during execution. This backend
will be where all files used during execution and created as output from the pipeline will be stored. The specific inputs
required here will vary with the selected compute backend. For instance, the SciServer Files Service backend requires
login credentials, the selection of a storage volume, and the type of the volume.

When all settings have been specified, click Run to begin execution. For information on how to check execution
status, consult the Viewing Executions walkthrough.

To view the output of the execution, go to the Executions tab and check the box next to the desired execution.

For a more detailed and larger view of individual figures, click on the name of the execution to view its status page and
open the console output for the desired operation. In the bottom left is a set of buttons for switching between console
output and graph output for that operation.

15.8. Execution and Results 67

https://www.sciserver.org/about/compute/
viewing-executions.rst

deepforge Documentation

68 Chapter 15. CIFAR-10 Classifier

CHAPTER 16

Redshift Estimator

This guide provides instructions on how to create a full pipeline for training and evaluating a convolutional neural
network on the task of predicting astronomical redshift values given images of galaxies. It provides an approach that is
simplified from work by Pasquet et. al. The data referenced and used in this guide was obtained from the Sloan Digital
Sky Survey Data Release 3, obtained via SciServer’s CasJobs Service, and processed using Astromatic’s SWarp tool.
This guide assumes that the reader has a basic understanding of the DeepForge interface and how to create basic
pipelines. New users are recommended to review the step-by-step guides before attempting the process described in
this guide.

16.1 Pipeline Overview

This guild will give instruction on creating a pipeline that will create, train, and evaluate a model that estimates
photometric redshift. Each of the sections below details how to create a piece of the final pipeline and how each piece
is connected.

69

https://arxiv.org/abs/1806.06607
https://www.sdss.org/dr13/
https://www.sdss.org/dr13/
http://www.sciserver.org/about/casjobs/
https://www.astromatic.net/software/swarp
introduction.rst

deepforge Documentation

16.2 Input Operations

While it is possible to retrieve the data needed for model creation programmatically in many cases, this guide makes
use of the Input operations to load preprocessed data. This is in the interest of both simplicity and generalizability to
datasets and data sources different than those used in this tutorial.

This pipeline uses four Input operations. These operations provide the training input images, training output values,
testing input images, and testing output values. For the purposes of this tutorial, the structure of the input images is a
4D numpy array of shape (N, 64, 64, 5), where N is the number of images. The outputs are 1D numpy arrays of length
N. The process described in this tutorial will work for images that are not 64*64 pixels in size and that use any number
of color channels, requiring only a slight change in the neural network.

Each Input operation requires an artifact to have been added to the project. To do this, go to the artifacts view and
click either of the two floating buttons in the bottom right of the workspace (one button only appears on hover).

With these buttons, you can either upload a local file to one of the storage backends or import a file that already exists
within a storage backend.

By default, all artifacts are treated as python pickle objects. Using other forms of serialized data, such as FITS or npy
files, requires defining a custom serializer in the Custom Serialization view, which is not covered in this tutorial.

16.3 TrainRedshift Operation

The first custom operation will create and train the neural network classifier.

Two attributes should be added: batch_size and epochs. Batch size is the number of training samples that the model
will be trained on at a time and epochs is the number of times that each training sample will be given to the model.
Both are important hyperparameters for training a neural network. For this guide, the attributes are defined as shown
below, but the exact number used for default values can be changed as desired by the reader.

This operation will require two inputs (images and labels) and a neural network architecture. Finally, the operation
produces one output, which is the trained classifier model. After all inputs, outputs, and attributes have been added,
the structure of the operation should appear similar to the following:

70 Chapter 16. Redshift Estimator

https://docs.python.org/3/library/pickle.html
https://fits.gsfc.nasa.gov/fits_documentation.html
https://numpy.org/doc/stable/reference/generated/numpy.lib.format.html

deepforge Documentation

16.3. TrainRedshift Operation 71

deepforge Documentation

The code for this operation follows the standard procedure for creating and training a Keras network with one minor
caveat. The method used by Pasquet et al. on which this pipeline is based formulates redshift prediction as a clas-
sification problem. Because the labels used in this tutorial are floating point values, they must be converted into a
categorical format. This is the purpose of the to_categorical function. The code for this operation is shown below.

import numpy as np

class TrainRedshift():
def __init__(self, architecture,

epochs=20,
batch_size=32):

self.arch = architecture
self.epochs = epochs
self.batch_size = batch_size

Maximum expected redshift value and number of bins to be used in
→˓classification

step. The max_val will need to change to be reasonably close to the maximum
redshift of your dataset. The number of bins must match the output shape of

→˓the
architecture but may be tuned as a hyperparameter. Both can optionally be

→˓made
attributes of the operation.
self.max_val = 0.4
self.num_bins = 180
return

def execute(self, images, labels):
print(type(labels))
print("Initializing Model")

Initialize the model
self.arch.compile(loss='sparse_categorical_crossentropy',

optimizer='adam',
metrics=['sparse_categorical_accuracy'])

print("Model Initialized Successfully")

print("Beginning Training")
print("Training images shape:", images.shape)
print("Training labels shape:", labels.shape)

Train the model on the images and the labels. Labels are converted to
→˓categorical

data because the architecture expects an index to an output vector of
→˓length 180

self.arch.fit(images,
self.to_categorical(labels),
epochs=self.epochs,
verbose=2)

print("Training Complete")

Saves the model in a new variable. This is necessary so that the
ouput of the operation is named 'model'
model = self.arch
return model

(continues on next page)

72 Chapter 16. Redshift Estimator

deepforge Documentation

(continued from previous page)

Converts floating point labels to categorical vectors. The result for a given
→˓input

label is a 1D vector of length 1 whose value is the index representing the
→˓range in

which the label falls. For example, if the max_val is 0.4 and the num_bins is 4,
→˓ the

possible indices are 0-3, representing the ranges [0,0.1), [0.1,0.2), [0.2,0.3),
→˓ and

[0.3,0.4] respectively. So, a label of 0.12 results in an output of [1]
def to_categorical(self, labels):

return np.array(labels) // (self.max_val / self.num_bins)

After the operation is fully defined, it needs to be added to the workspace and connected to the Input operations as
shown below. Specifically, the training images and training outputs should be connected to the images and labels
inputs of TrainRedshift respectively.

Note that the architecture selected from within the pipeline editor until after the Neural Network Architecture section
of this guide is completed.

16.4 Neural Network Architecture

This section will describe how to create a convolutional neural network for estimating redshift from images. In
particular, this section gives instructions on creating an Inception-v1 network. The basic structure of this network is
an input block, a series of five inception blocks, followed by a densely connected classifier block. These blocks are
each described in order below.

For reference during design, the full architecture can be found here.

16.4.1 Input Block

The input block begins, as with all network architectures, with an Input layer. The shape of this layer should be the
shape of the input images (64*64*3 in this case). This input feeds into a 5*5 Conv2D layer with 64 filters and linear
activation. The activation here is linear because the layer is to be activated by the PReLU layer that follows. The Input
block is finished with an AveragePooling2D layer with a window size and stride of 2. Note that all layers use same
padding to prevent changes in data shape due to the window size.

16.4.2 Inception Blocks

The five inception blocks fall into one of three designs. Blocks 1 and 3 share the same design, as do blocks 2 and 4.
Each of the three designs are described more detail below. Take note throughout these subsections that every Conv2D
layer is followed by a PReLU layer using the default attribute values. In addition, all AveragePooling2D layers will

16.4. Neural Network Architecture 73

https://towardsdatascience.com/a-simple-guide-to-the-versions-of-the-inception-network-7fc52b863202#8fff
images/incep-full.png

deepforge Documentation

use have the attribute values of (2,2) for both pool_size and strides and same for padding. In the interest of brevity,
this will not be pointed out in each subsection.

Inception Blocks 1 and 3

Blocks 1 and 3 each begins with an AveragePooling2D layer. This is the same layer pictured at the bottom of the input
block and blocks 2 and 4. The output of this layer is fed into 4 separate Conv2D layers that all have a kernel_size of
1*1. Two of these new layers feed into another Conv2D layer, one with kernel_size 3*3 and another with kernel_size
5*5. Another of the original Conv2D layers feeds into an AveragePooling2D layer. Finally, the remaining original
Conv2D layer, along with the AveragePooling2D layer and the two new Conv2D layers all feed into a Concatenate
layer. For reference, the expected structure is shown below.

Inception Blocks 2 and 4

Blocks 2 and 4 are laid out mostly identically to blocks 1 and 3, with the exception of the first and last layers.
The first layer in these blocks is the Concatenate layer from the end of the previous block. In addition, another
AveragePooling2D layer is added after the Concatenate layer at the end of the block. For reference, the expected
structure is shown below.

Inception Block 5

Block 5 is laid out mostly identically to blocks 1 and 3. The only difference is that one of the two branches with two
Conv2D layers is omitted. Specifically, the branch in which the second layer has a kernel_size of 5*5 is left out. For
reference, the expected structure is shown below.

74 Chapter 16. Redshift Estimator

deepforge Documentation

16.4. Neural Network Architecture 75

deepforge Documentation

Conv2D Attributes

All Conv2D layers in the architecture use a stride of 1, use same padding, and use a linear activation function. The
only attributes that vary between the various layers are the number of filters and the kernel_size. Notice in the diagrams
above that every Conv2D layer is marked with an identifying letter. The table below gives the correct values for filters
and kernel_size for every layer in each inception block.

Block 1 Block 2 Block 3 Block 4 Block 5
Con2D layer filters kernel filters kernel filters kernel filters kernel filters kernel
a 48 (1,1) 64 (1,1) 92 (1,1) 92 (1,1) 92 (1,1)
b 64 (1,1) 92 (1,1) 128 (1,1) 128 (1,1) 128 (1,1)
c (3,3) (3,3) (3,3) (3,3) (3,3)
d (5,5) (5,5) (5,5) (5,5)

16.4.3 Classifier Block

The classifier block begins with a Flatten layer to reshape the data into a 1D vector. This feeds into a Dense layer with
1096 units and ReLU activation. The next layer is a Dropout layer intended to help prevent overfitting. The dropout
rate used here is 0.3, but this may require tuning to fit the dataset most appropriately. . Finally, a Dense layer using
softmax activation produces the final output. This final layer must use the value for units as the num_bins variable
used in various operations. An optional Output layer may also be included but is unnecessary as long as the Dense
layer is the lowest layer in the architecture.

16.5 PredictRedshift Operation

This operation uses the model created by TrainRedshift to predict the values of a set on input images. This operation
has no attributes, takes a model and a set of images as input and produces a set of predicted values (named labels) and
the associates probability density functions that resulted in those values (named pdfs). The structure of the operation
is as shown below:

The model.predict function results in a probability density function (PDF) over all redshift values in the allowed range
[0,0.4]. In order to get scalar values for predictions, a weighted average is taken for each PDF where the value being

76 Chapter 16. Redshift Estimator

deepforge Documentation

16.5. PredictRedshift Operation 77

deepforge Documentation

averaged is the redshift value represented by that bin and the weight is the PDF value at that bin (i.e. how likely it is
that the value represented by that bin is the actual redshift value).

import numpy as np

class PredictRedshift():

def execute(self, images, model):
See first comment in PredictRedshift()
max_val = 0.4
num_bins = 180
step = max_val / num_bins

Generates PDF for the redshift of each image
pdfs = model.predict(images)
bin_starts = np.arange(0, max_val, step)

Regresses prediction to a scalar value. Essentially a weighted average
where the weights are the pdf values for each bin and the values are
the beginning of the range represented by each bin.
labels = np.sum((bin_starts + (step / 2)) * pdfs, axis=1)

return pdfs, labels

After the operation is fully defined, it needs to be added to the workspace and connected to the previous operations
as shown below. Specifically, the test images Input operation and the model output from TrainRedshift should be
connected to the images and model inputs to PredictRedshift respectively.

16.6 EvalRedshift Operation

This operation creates a figure for evaluating the accuracy of the redshift model. The resulting figure (shown on the
right in the image below) plots the true redshift value against the predicted value. The further a point falls away from
the diagonal dotted line, the more incorrect that prediction.

This operation has no attributes and produces no output. It requires two inputs in the form of a list of predicted redshift
values (pt) and a list of actual redshift values (gt). The structure of the operation is as shown below:

The code for this operation is below and is heavily annotated to explain the various graphing functions.

import numpy as np
from properscoring import crps_gaussian
import matplotlib.pyplot as plt

class EvalRedshift():

(continues on next page)

78 Chapter 16. Redshift Estimator

deepforge Documentation

16.6. EvalRedshift Operation 79

deepforge Documentation

(continued from previous page)

def execute(self, gt, pt):
print('Evaluating model')

Calculates various metrics for later display. For more info, see section 4.
→˓1 of

of Pasquet et. al.
residuals = (pt - gt) / (gt + 1)
pred_bias = np.average(residuals)
dev_MAD = np.median(np.abs(residuals - np.median(residuals))) * 1.4826
frac_outliers = np.count_nonzero(np.abs(residuals) > (dev_MAD * 5)) /

→˓len(residuals)
crps = np.average(crps_gaussian(pt, np.mean(pt), np.std(pt)))

Creates the figure and gives it a title
plt.figure()
plt.title('Redshift Confusion Scatterplot')

Plots all galaxies where the x-value is the true redshift of a galaxy and
→˓the

y-value is the predicted redshift value of a galaxy
plt.scatter(gt, pt)

Creates a dashed black line representing the line on which a perfect
→˓prediction

would lie. This line has a slope of 1 and goes from the origin to the
→˓maximum

redshift (predicted or actual)
maxRS = max(max(gt), max(pt))
endpoints = [0, maxRS]
plt.plot(endpoints, endpoints, '--k')

Creates a formatted string with one metric per line. Prints metrics to three
decimal places
metricStr = 'pred_bias: {pb:.03f}\n' + \

'MAD Deviation: {dm:.03f}\n' + \
'Fraction of Outliers: {fo:.03f}\n' + \
'Avg. CRPS: {ac:.03f}'

formattedMetrics = metricStr.format(pb=pred_bias,
dm=dev_MAD,
fo=frac_outliers,
ac=crps)

Prints the metrics string at the top left of the figure
plt.text(0, maxRS, formattedMetrics, va='top')

Labels axes and displays figure
plt.ylabel('Predicted Redshift')
plt.xlabel('True Redshift')
plt.show()

return

Notice in the above code that there is a new library used to calculate one of the metrics. This library is not standard
and is not included in many default environments. Because of this, the library needs to be added to the environment
at runtime by going to the Environment tab in the operation editor and defining the operation dependencies as shown
below. Operation dependencies are defined in the style of a conda environment file.

80 Chapter 16. Redshift Estimator

https://conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#creating-an-environment-file-manually

deepforge Documentation

After the operation is fully defined, it needs to be added to the workspace and connected to the previous operations
as shown below. Specifically, the test values Input operation and the labels output from PredictRedshift should be
connected to the gt and pt inputs to EvalRedshift respectively.

16.7 PdfVisRedshift Operation

This operation creates another figure for evaluating the accuracy of the redshift model as shown below. Compared
to the output of the EvalRedshift operation, this figure provides a more zoomed in picture of individual predictions.
Each of the subplots is a plotting of the probability density function for a randomly chosen input image. The red and
green lines indicate the predicted and actual value of the image’s redshift value respectively.

This operation has one attribute, num_images and produces no output. It requires three inputs in the form of a list of
predicted redshift values (pt), a list of actual redshift values (gt), and a list of probability density functions (pdfs). The
structure of the operation is as shown below:

The code for this operation is below and is heavily annotated to explain the various graphing functions.

import numpy as np
import matplotlib.pyplot as plt
import math

class PdfVisRedshift():
def __init__(self, num_images=9):

(continues on next page)

16.7. PdfVisRedshift Operation 81

deepforge Documentation

82 Chapter 16. Redshift Estimator

deepforge Documentation

(continued from previous page)

Calculates the number of rows and columns needed to arrange the images in
as square of a shape as possible
self.num_images = num_images
self.num_cols = math.ceil(math.sqrt(num_images))
self.num_rows = math.ceil(num_images / self.num_cols)

self.max_val = 0.4
return

def execute(self, gt, pt, pdfs):

Creates a collection of subfigures. Because each prediciton uses the same
→˓bins,

x-axes are shared.
fig, splts = plt.subplots(self.num_rows,

self.num_cols,
sharex=True,
sharey=False)

Chooses a random selection of indices representing the chosen images
random_indices = np.random.choice(np.arange(len(pt)),

self.num_images,
replace=False)

Extracts the pdfs and redshifts represented by the chosen indices
s_pdfs = np.take(pdfs, random_indices, axis=0)
s_pt = np.take(pt, random_indices, axis=0)
s_gt = np.take(gt, random_indices, axis=0)

Creates a list of the lower end of the ranges represented by each bin
x_range = np.arange(0, self.max_val, self.max_val / pdfs.shape[1])

for i in range(self.num_images):
col = i % self.num_cols
row = i // self.num_cols

Creates a line graph from the current image's pdf
splts[row,col].plot(x_range, s_pdfs[i],'-')

Creates two vertical lines to represent the predicted value (red) and
→˓the

actual value (green)
splts[row,col].axvline(s_pt[i], color='red')
splts[row,col].axvline(s_gt[i], color='green')

Creates a formatted string with one metric per line. Prints metrics to
→˓three

decimal places. d (delta) is how far off the prediction was from the
→˓actual value

metricString = 'gt={gt:.03f}\npt={pt:.03f}\n \u0394={d:.03f}'
metricString = metricString.format(gt = s_gt[i],

pt = s_pt[i],
d = abs(s_gt[i]-s_pt[i]))

Determines whether the metrics should be printed on the left or right
→˓of the

(continues on next page)

16.7. PdfVisRedshift Operation 83

deepforge Documentation

(continued from previous page)

figure. If prediction is on the left end, the right side should be more
→˓clear

and should be the chosen side.
alignRight = s_pt[i] <= self.max_val / 2

Adds the metric string to the figure at the top of the subfigure (which
→˓is the

max value of that pdf)
splts[row,col].text(self.max_val if alignRight else 0,

np.max(s_pdfs[i]),
metricString,
va='top',
ha='right' if alignRight else 'left')

Automatically tweaks margins and positioning of the graph
plt.tight_layout()
plt.show()

After the operation is fully defined, it needs to be added to the workspace and connected to the previous operations
as shown below. Specifically, the labels and pdfs output from PredictRedshift and the test values Input operation
should be connected to the pt, pdfs and pt inputs to PdfVisRedshift respectively.

16.8 Output Operations

Output operations are special operations that allow saving python objects generated during execution. For instance, in
this tutorial, it might be useful to save the trained model and the generated predictions for later use or analysis. Shown
below is the result of adding two Output operations to the pipeline to save these two objects.

Objects created in this way will be saved in the execution working directory (defined in Execution Options when
executing a pipeline) under the name given to the operation’s saveName attribute. Objects saved in this manner will
also be automatically added to the list of available artifacts for use in other pipelines.

16.9 Execution and Results

As with all pipelines, this pipeline can be executed using the red floating button in the bottom right of the pipeline
editor view. In addition to the normal settings that are always included, this pipeline (as with any pipeline using Input
operations) required additional credentials for each artifact being used.

84 Chapter 16. Redshift Estimator

deepforge Documentation

16.9. Execution and Results 85

deepforge Documentation

To view the output of the execution, go to the Executions tab and check the box next to the desired execution.

For a more detailed and larger view of individual figures, click on the name of the execution to view its status page and
open the console output for the desired operation. In the bottom left is a set of buttons for switching between console
output and graph output for that operation.

86 Chapter 16. Redshift Estimator

CHAPTER 17

Tutorial Project - Redshift

The project described on this page can be found in the examples repo on GitHub under the name Redshift-
Tutorial.webgmex

17.1 Pipeline Overview

1. Basic Input/Output

2. Display Random Image

3. Display Random CIFAR-10

4. Train CIFAR-10

5. Train-Test

6. Train-Test-Compare

7. Train-PredVis

8. Download-Train-Evaluate

17.2 Pipelines

17.2.1 Basic Input/Output

This pipeline provides one of the simplest examples of a pipeline possible in DeepForge. Its sole purpose is to create
an array of numbers, pass the array from the first node to the second node, and print the array to the output console.

The Output operation shown is a special built-in operation that will save the data that is provided to it to the selected
storage backend. This data will then be available within the same project as an artifact and can be accessed by other
pipelines using the special built-in Input operation.

87

https://github.com/deepforge-dev/examples/tree/master/redshift-tutorial

deepforge Documentation

import numpy

class GenArray():
def __init__(self, length=10):

self.length = length
return

def execute(self):
arr = list(numpy.random.rand(self.length))
return arr

17.2.2 Display Random Image

This pipeline’s primary purpose is to show how graphics can be output and viewed. A random noise image is generated
and displayed using matplotlib’s pyplot library. Any graphic displayed using the plt.show() function can be viewed in
the executions tab.

from matplotlib import pyplot as plt
from random import randint

class DisplayImage():
def execute(self, image):

if len(image.shape) == 4:
image = image[randint(0, image.shape[0] - 1)]

plt.imshow(image)
plt.show()

88 Chapter 17. Tutorial Project - Redshift

deepforge Documentation

17.2.3 Display Random CIFAR-10

As with the previous pipeline, this pipeline simply displays a single image. The image from this pipeline, however,
is more meaningful, as it is drawn from the commonly used CIFAR-10 dataset. This pipeline seeks to provide an
example of the input being used in the next pipeline while providing an example of how the data can be obtained.
This is important for users who seek to develop their own pipelines, as CIFAR-10 data generally serves as an effective
baseline for testing and development of new CNN architectures or training processes.

Also note, as shown in the figure above, that it is not necessary to utilize all of the outputs of a given node. Unless
specifically handled, however, it is generally inappropriate for an input to be left undefined.

from keras.datasets import cifar10

class GetDataCifar():
def execute(self):

((train_imgs, train_labels),
(test_imgs, test_labels)) = cifar10.load_data()
return train_imgs, train_labels, test_imgs, test_labels

17.2.4 Train CIFAR-10

This pipeline gives a very basic example of how to create, train, and evaluate a simple CNN. The primary takeaway
from this pipeline should be the overall structure of a training pipeline, which should follow the following steps in
most cases:

1. Load data

2. Define the loss, optimizer, and other metrics

3. Compile model, with loss, metrics, and optimizer, using the compile() method

4. Train model using the fit() method, which requires the training inputs and outputs

5. Output the trained model for serialization and/or utilization in subsequent nodes

import numpy as np
import keras

class TrainBasic():
def __init__(self, model, epochs=20, batch_size=32, shuffle=True):

self.model = model
self.epochs = epochs
self.batch_size = batch_size
self.shuffle = shuffle

(continues on next page)

17.2. Pipelines 89

http://www.cs.toronto.edu/~kriz/cifar.html

deepforge Documentation

(continued from previous page)

return

def execute(self, train_imgs, train_labels):
opt = keras.optimizers.rmsprop(lr=0.001)
self.model.compile(loss='sparse_categorical_crossentropy',

optimizer=opt,
metrics=['sparse_categorical_accuracy'])

self.model.fit(train_imgs,
train_labels,
batch_size=self.batch_size,
epochs=self.epochs,
shuffle=self.shuffle,
verbose=2)

model = self.model
return model

class EvalBasic():
def __init__(self):

return

def execute(self, model, test_imgs, test_labels):
results = model.evaluate(test_imgs, test_labels, verbose=0)
for i, metric in enumerate(model.metrics_names):

print(metric,'-',results[i])
return results

90 Chapter 17. Tutorial Project - Redshift

deepforge Documentation

17.2.5 Train-Test

This pipeline provides an example of how one might train and evaluate a redshift estimation model. In particular, the
procedure implemented here is a simplified version of work by Pasquet et. al. (2018). For readers unfamiliar with
cosmological redshift, this article provides a simple and brief introduction to the topic. For the training process, there
are two primary additions that should be noted.

First, the Train class has been given a function named to_categorical. In line with the Paquet et. al. method linked
above, this tutorial uses a classification model rather than a regression model for estimation. Because we are using
classification models, the keras model expects the output labels to be either one-hot vectors or a single integer where
the position/value indicates the range in which the true redshift value falls. This function converts the continuous
redshift values into the necessary discrete, categorical format.

Second, a class has been provided to give examples of how researchers may define their own keras Sequence for train-
ing. Sequences are helpful in that they allow alterations to be made to the data during training. In the example given
here, the SdssSequence class provides the ability to rotate or flip images before every epoch, which will hopefully
improve the robustness of the final model.

The evaluation node has also been updated to provide metrics more in line with redshift estimation. Specifically, it
calculates the fraction of outlier predictions, the model’s prediction bias, the deviation in the MAD scores of the model
output, and the average Continuous Ranked Probability Score (CRPS) of the output.

17.2.6 Train-Test-Compare

This pipeline gives a more complicated example of how to create visualizations that may be helpful for understanding
the effectiveness of a model. The EvalCompare node provides a simple comparison visualization of two models.

17.2.7 Train-PredVis

This pipeline shows another more complex and useful visualization example that can be helpful for understanding the
effectiveness of your redshift estimation model. It generates a set of graphs like the one below that show the output

17.2. Pipelines 91

https://www.aanda.org/articles/aa/abs/2019/01/aa33617-18/aa33617-18.html
https://earthsky.org/astronomy-essentials/what-is-a-redshift
https://keras.io/api/utils/python_utils/#sequence-class

deepforge Documentation

92 Chapter 17. Tutorial Project - Redshift

deepforge Documentation

probability distribution function (pdf) for the redshift values of a set of random galaxies’ images. A pair of vertical
lines in each subplot indicate the actual redshift value (green) and the predicted redshift value (red) for that galaxy.

As shown in this example, any visualization that can be created using the matplotlib.pyplot python library can be
created and displayed by a pipeline. Displaying these visualizations can be accomplished by calling the pyplot.show()
function after building the visualization. They can then be viewed from the Executions view.

import numpy as np
from matplotlib import pyplot as plt

class PredVis():
def __init__(self, num_bins=180, num_rows=1, num_cols=1, max_val=0.4):

self.num_rows = num_rows
self.num_cols = num_cols
self.xrange = np.arange(0, max_val, max_val / num_bins)
return

def execute(self, pt, gt, pdfs):
fig, splts = plt.subplots(self.num_rows, self.num_cols, sharex=True,

→˓sharey=True)

num_samples = self.num_rows * self.num_cols

random_indices = np.random.choice(list(range(len(gt))), num_samples,
→˓replace=False)

s_pdfs = np.take(pdfs, random_indices, axis=0)
s_pt = np.take(pt, random_indices, axis=0)
s_gt = np.take(gt, random_indices, axis=0)

for i in range(num_samples):
col = i % self.num_cols
row = i // self.num_cols
splts[row,col].plot(self.xrange, s_pdfs[i],'-')
splts[row,col].axvline(s_pt[i], color='red')
splts[row,col].axvline(s_gt[i], color='green')

plt.show()

17.2.8 Download-Train-Evaluate

This pipeline provides an example of how data can be retrieved and utilized in the same pipeline. The previous
pipelines use manually uploaded artifacts. In many real cases, users may desire to retrieve novel data or more specific
data using SciServer’s CasJobs API. In such cases, the DownloadSDSS node here makes downloading data relatively

17.2. Pipelines 93

https://matplotlib.org/3.2.2/api/_as_gen/matplotlib.pyplot.html
../fundamentals/interface.rst#Executions

deepforge Documentation

simple for users. It should be noted that the data downloaded is not in a form easily usable by our models and first
requires moderate preprocessing, which is performed in the Preprocessing node. This general structure of download-
process-train is a common pattern, as data is rarely supplied in a clean, immediately usable format.

94 Chapter 17. Tutorial Project - Redshift

CHAPTER 18

Redshift Estimation

The project described on this page can be found in the examples repo on GitHub under the name Redshift-
Application.webgmex

This project provides a small collection of generalized pipelines for the training and utilization of redshift estimation
models. This project is designed to allow simple use by only requiring that the configuration parameters of individual
nodes be defined where necessary. The most involved alterations that should be necessary for most users is the
definition of additional architectures in the Resources tab. It should be noted that any newly defined architecture
should have an output length and input shape that match the num_bins and input_shape configuration parameters
being used in the various pipelines.

18.1 Pipeline Overview

• Train Test Single

• Train Test Compare

• Download Train Evaluate

• Train Predict

• Predict Pretrained

• Test Pretrained

• Download SDSS

• Download Train Predict

• Visualize Predictions

95

https://github.com/deepforge-dev/examples/tree/master/redshift-tutorial

deepforge Documentation

18.2 Pipelines

18.2.1 Train Test Single

Trains and evaluates a single CNN model. Uses predefined artifacts that contain the training and testing data. For this
and all training pipelines, the artifacts should each contain a single numpy array. Input arrays should be a 4D array
of shape (n, y, x, c) where n=number of images, y=image height, x=image width, and c=number of color channels.
Output (label) arrays should be of shape (n,) .

18.2.2 Train Test Compare

Trains and evaluates two CNN models and compares effectiveness of the models.

18.2.3 Download Train Evaluate

Downloads SDSS images, trains a model on the images, and evaluates the model on a separate set of downloaded
images. Care should be taken when defining your own CasJobs query to ensure that all queried galaxies for training
have a redshift value below the Train node’s max_val configuration parameter’s value.

18.2.4 Train Predict

Trains a single CNN model and uses the newly trained model to predict the redshift value of another set of galaxies.

18.2.5 Predict Pretrained

Predicts the redshift value of a set of galaxies using a pre-existing model that is saved as an artifact.

96 Chapter 18. Redshift Estimation

deepforge Documentation

18.2.6 Test Pretrained

Evaluates the performance of a pre-existing model that is saved as an artifact.

18.2.7 Download SDSS

Download SDSS images and save them as artifacts. Can be used in conjunction with the other pipelines that rely on
artifacts rather than images retrieved at execution time.

18.2.8 Download Train Predict

Download SDSS images and use some images to train a model before using the model to predict the redshift value of
the remaining galaxies.

18.2.9 Visualize Predictions

This pipeline produces a visualization that can be helpful for understanding the effectiveness of your redshift estimation
model. It generates a set of graphs like the one below that show the output probability distribution function (pdf) for
the redshift values of a set of random galaxies’ images. A pair of vertical lines in each subplot indicate the actual
redshift value (green) and the predicted redshift value (red) for that galaxy. This allows users to see how far the
model’s predictions are from the correct answers and can help with identifying biases or weak-points the model may
have (for example, consistently underestimation or inaccuracy with galaxies in a specific redshift range).

18.2. Pipelines 97

deepforge Documentation

98 Chapter 18. Redshift Estimation

CHAPTER 19

Command Line Interface

This document outlines the functionality of the deepforge command line interface (provided after installing deepforge
with npm install -g deepforge).

• Installation Configuration

• Starting DeepForge or Components

• Update or Uninstall DeepForge

• Managing Extensions

19.1 Installation Configuration

Installation configuration can be edited using the deepforge config command as shown in the following exam-
ples:

Printing all the configuration settings:

deepforge config

Printing the value of a configuration setting:

deepforge config blob.dir

Setting a configuration option, such as blob.dir can be done with:

deepforge config blob.dir /some/new/directory

For more information about the configuration settings, check out the configuration page.

99

configuration.rst

deepforge Documentation

19.2 Starting DeepForge Components

The DeepForge server can be started with the deepforge start command. By default, this command will start
both the server and a mongo database (if applicable).

The server can be started by itself using

deepforge start --server

19.3 Update/Uninstall DeepForge

DeepForge can be updated or uninstalled using

deepforge update

DeepForge can be uninstalled using deepforge uninstall

19.4 Managing Extensions

DeepForge extensions can be installed and removed using the deepforge extensions subcommand. Extensions
can be added, removed and listed as shown below

deepforge extensions add https://github.com/example/some-extension
deepforge extensions remove some-extension
deepforge extensions list

100 Chapter 19. Command Line Interface

CHAPTER 20

Configuration

Configuration of deepforge is done through the deepforge config command from the command line interface. To see
all config options, simply run deepforge config with no additional arguments. This will print a JSON representation of
the configuration settings similar to:

Current config:
{

"blob": {
"dir": "/home/irishninja/.deepforge/blob"

},
"mongo": {
"dir": "~/.deepforge/data"

}
}

Setting an attribute, say blob.dir, is done as follows

deepforge config blob.dir /tmp

20.1 Environment Variables

Most settings have a corresponding environment variable which can be used to override the value set in the cli’s
configuration. This allows the values to be temporarily set for a single run. For example, starting the server with a
different blob location can be accomplished by setting blob.dir can be done with:

DEEPFORGE_BLOB_DIR=/tmp deepforge start -s

The complete list of the environment variable overrides for the configuration options can be found here.

101

https://github.com/deepforge-dev/deepforge/blob/master/bin/envConfig.json

deepforge Documentation

20.2 Settings

20.2.1 blob.dir

The path to the blob (large file storage containing models, datasets, etc) to be used by the deepforge server.

This can be overridden with the DEEPFORGE_BLOB_DIR environment variable.

20.2.2 mongo.dir

The path to use for the –dbpath option of mongo if starting mongo using the command line interface. That is, if
the MONGO_URI is set to a local uri and the cli is starting the deepforge server, the cli will check to verify that an
instance of mongo is running locally. If not, it will start it on the given port and use this setting for the –dbpath setting
of mongod.

102 Chapter 20. Configuration

CHAPTER 21

Operation Feedback

Operations can provide a variety of forms of real-time feedback including subplots, 2D and 3D plots and images using
matplotlib.

21.1 Graphs

The following example shows a sample 3D scatter plot and its rendering in DeepForge.

import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D

class Scatter3DPlots():

def execute(self):
Set random seed for reproducibility
np.random.seed(19680801)

def randrange(n, vmin, vmax):
'''
Helper function to make an array of random numbers having shape (n,)
with each number distributed Uniform(vmin, vmax).
'''
return (vmax - vmin)*np.random.rand(n) + vmin

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

n = 100

For each set of style and range settings, plot n random points in the box
defined by x in [23, 32], y in [0, 100], z in [zlow, zhigh].

(continues on next page)

103

deepforge Documentation

(continued from previous page)

for m, zlow, zhigh in [('o', -50, -25), ('^', -30, -5)]:
xs = randrange(n, 23, 32)
ys = randrange(n, 0, 100)
zs = randrange(n, zlow, zhigh)
ax.scatter(xs, ys, zs, marker=m)

ax.set_xlabel('X Label')
ax.set_ylabel('Y Label')
ax.set_zlabel('Z Label')
plt.show()

Fig. 1: Example of a 3D scatter plot using matplotlib in DeepForge

21.2 Images

Visualizing images using matplotlib is also supported. The following example shows images from the MNIST fashion
dataset.

104 Chapter 21. Operation Feedback

deepforge Documentation

from matplotlib import pyplot
from keras.datasets import fashion_mnist

class MnistFashion():

def execute(self):

(trainX, trainy), (testX, testy) = fashion_mnist.load_data()
summarize loaded dataset
print('Train: X=%s, y=%s' % (trainX.shape, trainy.shape))
print('Test: X=%s, y=%s' % (testX.shape, testy.shape))
for i in range(9):

pyplot.subplot(330 + 1 + i) # define subplot
pyplot.imshow(trainX[i], cmap=pyplot.get_cmap('gray')) # plot raw pixel

→˓data
pyplot.show()

21.2. Images 105

deepforge Documentation

Fig. 2: Visualizing MNIST fashion images in DeepForge

106 Chapter 21. Operation Feedback

	Getting Started
	Quick Start
	Interface Overview
	Custom Operations
	Storage and Compute Adapters
	Quick Start
	Overview
	Native Installation
	Introduction
	Creating Pipelines
	Creating Operations
	Creating Neural Networks
	Executing Pipelines
	Viewing Executions
	CIFAR-10 Classifier
	Redshift Estimator
	Tutorial Project - Redshift
	Redshift Estimation
	Command Line Interface
	Configuration
	Operation Feedback

