
deepforge Documentation

Brian Broll

Aug 20, 2020

Getting Started

1 Getting Started 1

2 Quick Start 3

3 Interface Overview 5

4 Custom Operations 13

5 Storage and Compute Adapters 19

6 Quick Start 21

7 Overview 23

8 Native Installation 25

9 Tutorial Project - Redshift 29

10 Redshift Estimation 37

11 Command Line Interface 41

12 Configuration 43

13 Operation Feedback 45

i

ii

CHAPTER 1

Getting Started

1.1 What is DeepForge?

Deep learning is a promising, yet complex, area of machine learning. This complexity can both create a barrier to
entry for those wanting to get involved in deep learning as well as slow the development of those already comfortable
in deep learning.

DeepForge is a development environment for deep learning focused on alleviating these problems. Leveraging prin-
ciples from Model-Driven Engineering, DeepForge is able to reduce the complexity of using deep learning while
providing an opportunity for integrating with other domain specific modeling environments created with WebGME.

1.2 Design Goals

As mentioned above, DeepForge focuses on two main goals:

1. Improving the efficiency of experienced data scientists/researchers in deep learning

2. Lowering the barrier to entry for newcomers to deep learning

It is important to highlight that although one of the goals is focused on lowering the barrier to entry, DeepForge is
intended to be more than simply an educational tool; that is, it is important not to compromise on flexibility and
effectiveness as a research/industry tool in order to provide an easier experience for beginners (that’s what forks are
for!).

1.3 Overview and Features

DeepForge provides a collaborative, distributed development environment for deep learning. The development en-
vironment is a hybrid visual and textual programming environment. Higher levels of abstraction, such as creating
architectures, use visual environments to capture the overall structure of the task while lower levels of abstraction,
such as defining custom training functions, utilize text environments. DeepForge contains both a pipelining language

1

https://webgme.org

deepforge Documentation

and editor for defining the high level operations to perform while training or evaluating your models as well as a
language for defining neural networks (through installing a DeepForge extension such as DeepForge-Keras).

1.3.1 Concepts and Terminology

• Operation - essentially a function written in Python (such as training a model, visualizing results, etc)

• Pipeline - directed acyclic graph composed of operations - e.g., a training pipeline may retrieve and normalize
data, train an architecture and return the trained model

• Execution - when a pipeline is run, an “execution” is created and reports the status of each operation as it is run
(distributed over a number of worker machines)

• Artifact - an artifact represents some data (either user uploaded or created during an execution)

• Resource - a domain specific model (provided by a DeepForge extension) to be used by a pipeline such as a
neural network architecture

2 Chapter 1. Getting Started

https://github.com/deepforge-dev/deepforge-keras

CHAPTER 2

Quick Start

There are two ways to give DeepForge a try: visit the public deployment at https://editor.deepforge.org, or spin up
your own deployment locally.

2.1 Connecting to the Public Deployment

As of this writing, registration is not yet open to the public and is only available upon request.

After getting an account for https://editor.deepforge.org, the only thing required to get up and running with DeepForge
is to determine the compute and storage adapters to use. If you already have an account with one of the existing
integrations, then you should be able to use those without any further setup!

If not, the easiest way to get started is to connect your own desktop to use for compute and to use the S3 adapter to
storage data and trained model weights. Connect your own desktop for computation using the following command
(using docker):

docker run -it deepforge/worker:latest --host https://dev.deepforge.org -t <access
→˓token>

where <access token> is an access token for your user (created from the profile page of https://editor.deepforge.org).

After connecting a machine to use for computation, you can start creating and running pipelines w/o input or output
operations! To save artifacts in DeepForge, you will need to connect a storage adapter such as the S3 adapter.

To easily create a custom storage location, minio is recommended. Simply spin up an instance of minio on a machine
publicly accessible from the internet. Providing the public IP address of the machine (along with any configured
credentials) to DeepForge when executing a pipeline will enable you to save any generated artifacts, such as trained
model weights, to the minio instance and register it within DeepForge.

3

https://editor.deepforge.org
../deployment/quick_start.html
../deployment/quick_start.html
https://editor.deepforge.org
../fundamentals/integration.html
https://editor.deepforge.org
https://min.io
https://docs.min.io/docs/minio-quickstart-guide.html

deepforge Documentation

4 Chapter 2. Quick Start

CHAPTER 3

Interface Overview

The DeepForge editor interface is separated into six views for defining all of the necessary features of your desired
project. The details of each interface tab are detailed below. You can switch to any of the views at any time by clicking
the appropriate icon on the left side of the screen. In order, the tabs are:

• Pipelines
• Executions
• Resources
• Artifacts
• Custom Utils
• Custom Serialization

5

deepforge Documentation

3.1 Pipelines

In the initial view, all pipelines that currently exist in the project are displayed. New pipelines can be created using the
floating red button in the bottom right. From this screen, existing pipelines can also be opened for editing, deleted, or
renamed.

3.1.1 Pipeline editing

DeepForge pipelines are directed acyclic graphs of operations, where each operation is an isolated python module.
Operations are added to a pipeline using the red plus button in the bottom right of the workspace. Any operations
that have previously been defined in the project can be added to the pipeline, or new operations can be created when
needed. Arrows in the workspace indicate the passing of data between operations. These arrows can be created by
clicking on the desired output (bottom circles) of the first operation before clicking on the desired input (top circles)
of the second operation. Clicking on a operation also gives the options to delete (red X), edit (blue </>), or change
attributes. Information on the editing of operations can be found in Custom Operations

Pipelines are executed by clicking the yellow play button in the bottom right of the workspace. In the window that
appears, you can name the execution, select a computation platform, and select a storage platform. Computation
platforms specify what the compute resources used for execution of the operations, such as SciServer Compute, will
be. Supported storage platforms, such as endpoints with an S3-compatible API, are used to store intermediate and
output data. The provided storage option will be used for storing both the output objects defined in the pipeline, as
well as all files used in execution of the pipeline.

6 Chapter 3. Interface Overview

custom_operations.rst
https://apps.sciserver.org/compute/

deepforge Documentation

3.1. Pipelines 7

deepforge Documentation

3.2 Executions

This view allows the review of previous pipeline executions. Clicking on any execution will display any plotted data
generated by the pipeline, and selecting multiple executions will display all of the selected plots together. Clicking the
provided links will open either the associated pipeline or a trace of the execution (shown below). The blue icon in the
top right of every operation allows viewing the text output of that operation. The execution trace can be viewed during
execution to check the status of a running job. During execution, the color of a operation indicates its current status.
The possible statuses are:

• Dark gray: Pending Execution

• Light gray: Execution Queued

• Yellow: Execution in Progress

• Orange: Execution Cancelled

• Green: Successfully Finished Execution

• Red: Execution Failed

3.3 Resources

This view shows the resources available for use in pipelines. Different types of resources are made available through
DeepForge extensions and enable the introduction of new concepts into the project. One such example is deepforge-
keras which enables users to make neural networks architectures with a custom visual editor. The created architectures
can then be referenced and used by operations for tasks such as training. From this view, resources can be created,
deleted, and renamed.

As with pipelines, the neural networks are depicted as directed graphs. Each node in the graph corresponds to a single
layer or operation in the network (information on operations can be found on the keras website). Clicking on a layer
provides the ability to change the attributes of that layer, delete the layer, or add new layers before or after the current
layer. Many operations require that certain attributes be defined before use. The Conv2D operation pictured above, for
example, requires that the filters and kernel_size attributes be defined. If these are left as <none>, a visual indicator

8 Chapter 3. Interface Overview

https://github.com/deepforge-dev/deepforge-keras
https://github.com/deepforge-dev/deepforge-keras
https://keras.io/api/

deepforge Documentation

will show that there is an error to help prevent mistakes. In order to ease analysis and development, hovering over any
connecting line will display the shape of the data as it moves between the given layers.

3.4 Artifacts

In this view, you can see all artifacts that are available to your pipelines. These artifacts can be used in any pipeline
through the inclusion of the built in Input operation. Artifacts are pieces of saved data that may be associated with
some Python data type. Any arbitrary type of data may be used for creating an artifact, but if a data type is not specified,
or if a data type is not provided with a custom serialization, the artifact will be treated as a pickle object. If you have
data that cannot be opened with Python’s pickle module, you will need to create a custom serialization as described

3.4. Artifacts 9

https://docs.python.org/3/library/pickle.html

deepforge Documentation

below. Some deepforge extenstions may also support additional data types by default. DeepForge-Keras, for example,
supports saved keras models, in addition to the standard pickle objects, without the need for custom serialization.

A new artifact can be created in one of three ways. First, artifacts are automatically created during the execution of
any pipeline that includes the built-in Output operation. Second, artifacts can be directly uploaded in this view using
the red upload button in the bottom right of the workspace. Using this option will also upload the artifact to the storage
platform specified in the popup window. Finally, artifacts that already exist in one of the storage platforms can be
imported using the blue import button in the bottom right of the workspace.

3.5 Custom Utils

This view allows the creation and editing of custom utility modules. Utilities created here can be imported into any
pipeline operation. For example, the swarp_config_string shown above can be printed out in a operation using the
following code:

import utils.swarp_string as ss
print(ss.swarp_config_string)

3.6 Custom Serialization

In this view, you can create custom serialization protocols for the creation and use of artifacts that are neither python
pickle objects nor keras models. To create a serialization, you will need to define two functions, one for serialization
and one for deserialization. These functions must then be passed as arguments to the deepforge.serialization.register

10 Chapter 3. Interface Overview

deepforge Documentation

function as shown in the commented code above. The serializer and deserializer should have the same signatures as
the dump and load functions respectively from python’s pickle module.

3.6. Custom Serialization 11

https://docs.python.org/3/library/pickle.html

deepforge Documentation

12 Chapter 3. Interface Overview

CHAPTER 4

Custom Operations

In this document we will outline the basics of custom operations including the operation editor and operation feedback
utilities.

4.1 The Basics

Operations are used in pipelines and have named inputs and outputs. When creating a pipeline, if you don’t currently
find an operation for the given task, you can easily create your own by selecting the New Operation. . . operation from
the add operation dialog. This will create a new operation definition and open it in the operation editor. The operation
editor has two main parts, the interface editor and the implementation editor.

The interface editor is provided on the right and presents the interface as a diagram showing the input data and output
data as objects flowing into or out of the given operation. Selecting the operation node in the operation interface editor
will expand the node and allow the user to add or edit attributes for the given operation. These attributes are exposed
when using this operation in a pipeline and can be set at design time - that is, these are set when creating the given
pipeline. The interface diagram may also contain light blue nodes flowing into the operation. These nodes represent
“references” that the operation accepts as input before running. When using the operation, references will appear
alongside the attributes but will allow the user to select from a list of all possible targets when clicked.

The operation editor also provides an interface to specify operation python dependencies. DeepForge uses conda to
manage python dependencies for an operation. This pairs well with the integration of various compute platforms that
available to the user and the only requirement for a user is to have Conda installed in their computing platform. You
can specify operation dependencies using a conda environment file as shown in the diagram below:

To the left of the operation editor is the implementation editor. The implementation editor is a code editor specially
tailored for programming the implementations of operations in DeepForge. It also is synchronized with the interface
editor. A section of the implementation is shown below:

import numpy as np
from sklearn.model_selection import train_test_split
import keras
import time
from matplotlib import pyplot as plt

(continues on next page)

13

https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#create-env-file-manually

deepforge Documentation

Fig. 1: Editing the “TrainValidate” operation from the “redshift” example

(continued from previous page)

import tensorflow as tf

import tensorflow as tf
config = tf.compat.v1.ConfigProto()
config.gpu_options.allow_growth = True
sess = tf.compat.v1.Session(config=config)

class TrainValidate():
def __init__(self, model, epochs=10, batch_size=32):

self.model=model
self.batch_size = batch_size
self.epochs = epochs
np.random.seed(32)
return

def execute(self, dataset):
model=self.model
model.summary()
model.compile(optimizer='adam',

loss='sparse_categorical_crossentropy',
metrics=['sparse_categorical_accuracy'])

X = dataset['X']
y = dataset['y']
y_cats = self.to_categorical(y)
model.fit(X, y_cats,

epochs=self.epochs,
batch_size=self.batch_size,
validation_split=0.15,
callbacks=[PlotLosses()])

(continues on next page)

14 Chapter 4. Custom Operations

deepforge Documentation

Fig. 2: The TrainValidate operation accepts training data, a model and attributes for setting the batch size, and the
number of epochs.

Fig. 3: The operation environment contains python dependencies for the given operation.

4.1. The Basics 15

deepforge Documentation

(continued from previous page)

return model.get_weights()

def to_categorical(self, y, max_y=0.4, num_possible_classes=32):
one_step = max_y / num_possible_classes
y_cats = []
for values in y:

y_cats.append(int(values[0] / one_step))
return y_cats

def datagen(self, X, y):
Generates a batch of data
X1, y1 = list(), list()
n = 0
while 1:stash@{1}

for sample, label in zip(X, y):
n += 1
X1.append(sample)
y1.append(label)
if n == self.batch_size:

yield [[np.array(X1)], y1]
n = 0
X1, y1 = list(), list()

class PlotLosses(keras.callbacks.Callback):
def on_train_begin(self, logs={}):

self.i = 0
self.x = []
self.losses = []

def on_epoch_end(self, epoch, logs={}):
self.x.append(self.i)
self.losses.append(logs.get('loss'))
self.i += 1

self.update()

def update(self):
plt.clf()
plt.title("Training Loss")
plt.ylabel("CrossEntropy Loss")
plt.xlabel("Epochs")
plt.plot(self.x, self.losses, label="loss")
plt.legend()
plt.show()

The “TrainValidate” operation uses capabilities from the keras package to train the neural network. This operation
sets all the parameters using values provided to the operation as either attributes or references. In the implementation,
attributes are provided as arguments to the constructor making the user defined attributes accessible from within the
implementation. References are treated similarly to operation inputs and are also arguments to the constructor. This
can be seen with the model constructor argument. Finally, operations return their outputs in the execute method;
in this example, it returns a single output named model, that is, the trained neural network.

After defining the interface and implementation, we can now use the “TrainValidate” operation in our pipelines! An
example is shown below.

16 Chapter 4. Custom Operations

deepforge Documentation

Fig. 4: Using the “TrainValidate” operation in a pipeline

4.2 Operation Feedback

Operations in DeepForge can generate metadata about its execution. This metadata is generated during the execution
and provided back to the user in real-time. An example of this includes providing real-time plotting feedback. When
implementing an operation in DeepForge, this metadata can be created using the matplotlib plotting capabilities.

4.2. Operation Feedback 17

deepforge Documentation

Fig. 5: An example graph of the loss function while training a neural network.

18 Chapter 4. Custom Operations

CHAPTER 5

Storage and Compute Adapters

DeepForge is designed to integrate with existing computational and storage resources and is not intended to be a com-
petitor to existing HPC or object storage frameworks. This integration is made possible through the use of compute and
storage adapters. This section provides a brief description of these adapters as well as currently supported integrations.

5.1 Storage Adapters

Projects in DeepForge may contain artifacts which reference datasets, trained model weights, or other associated
binary data. Although the project code, pipelines, and models are stored in MongoDB, this associated data is stored
using a storage adapter. Storage adapters enable DeepForge to store this associated data using an appropriate storage
resource, such as a object store w/ an S3-compatible API. This also enables users to “bring their own storage” as they
can connect their existing cyberinfrastructure to a public deployment of DeepForge. Currently, DeepForge supports 3
different storage adapters:

1. S3 Storage: Object storage with an S3-compatible API such as minio or AWS S3

2. SciServer Files Service : Files service from SciServer

3. WebGME Blob Server : Blob storage provided by WebGME

5.2 Compute Adapters

Similar to storage adapters, compute adapters enable DeepForge to integrate with existing cyberinfrastructure used
for executing some computation or workflow. This is designed to allow users to leverage their existing HPC or other
computational resources with DeepForge. Compute adapters provide an interface through which DeepForge is able to
execute workflows (e.g., training a neural network) on external machines.

Currently, the following compute adapters are available:

1. WebGME Worker: A worker machine which polls for jobs via the WebGME Executor Framework. Registered
users can connect their own compute machines enabling them to use their personal desktops with DeepForge.

2. SciServer-Compute: Compute service offered by SciServer

19

https://play.min.io
https://aws.amazon.com/s3/
https://sciserver.org
https://webgme.org/
https://github.com/webgme/webgme/wiki/GME-Executor-Framework
https://sciserver.org

deepforge Documentation

3. Server Compute: Execute the job on the server machine. This is similar to the execution model used by Jupyter
notebook servers.

20 Chapter 5. Storage and Compute Adapters

CHAPTER 6

Quick Start

The recommended (and easiest) way to get started with DeepForge is using docker-compose. First, install docker and
docker-compose.

Next, download the docker-compose file for DeepForge:

wget https://raw.githubusercontent.com/deepforge-dev/deepforge/master/docker/docker-
→˓compose.yml

Next, you must decide if you would like authentication to be enabled. For production deployments, this is certainly
recommended. However, if you just want to spin up DeepForge to “kick the tires”, this is certainly not necessary.

6.1 Without User Accounts

Start the docker containers with docker-compose run :

docker-compose --file docker-compose.yml run -p 8888:8888 -p 8889:8889 -e "NODE_
→˓ENV=default" server

6.2 User Authentication Enabled

First, generate a public and private key pair

mkdir -p deepforge_keys
openssl genrsa -out deepforge_keys/private_key
openssl rsa -in deepforge_keys/private_key -pubout > deepforge_keys/public_key
export TOKEN_KEYS_DIR="$(pwd)/deepforge_keys"

Then start DeepForge using docker-compose run:

21

https://docs.docker.com/engine/installation/
https://docs.docker.com/compose/install/

deepforge Documentation

docker-compose --file docker-compose.yml run -v "${TOKEN_KEYS_DIR}:/token_keys" -p
→˓8888:8888 -p 8889:8889 server

Finally, create the admin user by connecting to the server’s docker container. First, get the ID of the container using:

docker ps

Then, connect to the running container:

docker exec -it <container ID> /bin/bash

and create the admin account

./bin/deepforge users useradd admin <admin email> <password> -c -s

After setting up DeepForge (with or without user accounts), it can be used by opening a browser to http://localhost:
8888!

For detailed instructions about deployment installations, check out our deployment installation instructions An exam-
ple of customizing a deployment using docker-compose can be found here.

22 Chapter 6. Quick Start

http://localhost:8888
http://localhost:8888
../getting_started/configuration.rst
https://github.com/deepforge-dev/deepforge/tree/master/.deployment

CHAPTER 7

Overview

7.1 DeepForge Component Overview

DeepForge is composed of four main elements:

• Client: The connected browsers working on DeepForge projects.

• Server: Main component hosting all the project information and is connected to by the clients.

• Compute: Connected computational resources used for executing pipelines.

• Storage: Connected storage resources used for storing project data artifacts such as datasets or trained model
weights.

7.2 Component Dependencies

The following dependencies are required for each component:

• Server (NodeJS LTS)

• Database (MongoDB v3.0.7)

• Client: We recommend using Google Chrome and are not supporting other browsers (for now). In other words,
other browsers can be used at your own risk.

7.3 Configuration

After installing DeepForge, it can be helpful to check out configuring DeepForge

23

getting_started/configuration.rst

deepforge Documentation

24 Chapter 7. Overview

CHAPTER 8

Native Installation

8.1 Dependencies

First, install NodeJS (LTS) and MongoDB. You may also need to install git if you haven’t already.

Next, you can install DeepForge using npm:

npm install -g deepforge

Now, you can check that it installed correctly:

deepforge --version

After installing DeepForge, it is recommended to install the deepforge-keras extension which provides capabilities for
modeling neural network architectures:

deepforge extensions add deepforge-dev/deepforge-keras

DeepForge can now be started with:

deepforge start

8.1.1 Database

Download and install MongoDB from the website. If you are planning on running MongoDB locally on the same
machine as DeepForge, simply start mongod and continue to setting up DeepForge.

If you are planning on running MongoDB remotely, set the environment variable “MONGO_URI” to the URI of the
Mongo instance that DeepForge will be using:

MONGO_URI="mongodb://pathToMyMongo.com:27017/myCollection" deepforge start

25

https://nodejs.org/en/
https://www.mongodb.org/
https://github.com/deepforge-dev/deepforge-keras
https://www.mongodb.org/

deepforge Documentation

8.1.2 Server

The DeepForge server is included with the deepforge cli and can be started simply with

deepforge start --server

By default, DeepForge will start on http://localhost:8888. However, the port can be specified with the –port option.
For example:

deepforge start --server --port 3000

8.1.3 Worker

The DeepForge worker (used with WebGME compute) can be used to enable users to connect their own machines to
use for any required computation. This can be installed from https://github.com/deepforge-dev/worker. It is recom-
mended to install Conda on the worker machine so any dependencies can be automatically installed.

8.1.4 Updating

DeepForge can be updated with the command line interface rather simply:

deepforge update

deepforge update --server

For more update options, check out deepforge update –help!

8.2 Manual Installation (Development)

Installing DeepForge for development is essentially cloning the repository and then using npm (node package manager)
to run the various start, test, etc, commands (including starting the individual components). The deepforge cli can still
be used but must be referenced from ./bin/deepforge. That is, deepforge start becomes ./bin/deepforge start (from the
project root).

8.2.1 DeepForge Server

First, clone the repository:

git clone https://github.com/dfst/deepforge.git

Then install the project dependencies:

npm install

To run all components locally start with

./bin/deepforge start

and navigate to http://localhost:8888 to start using DeepForge!

Alternatively, if jobs are going to be executed on an external worker, run ./bin/deepforge start -s locally and navigate
to http://localhost:8888.

26 Chapter 8. Native Installation

https://conda.io/en/latest/

deepforge Documentation

8.2.2 Updating

Updating can be done the same as any other git project; that is, by running git pull from the project root. Sometimes,
the dependencies need to be updated so it is recommended to run npm install following git pull.

8.3 Manual Installation (Production)

To deploy a deepforge server in a production environment, follow the following steps. These steps are for using a
Linux server and if you are using a platform other than Linux, we recommend using a dockerized deployment.

1. Make sure you have a working installation of Conda in your server.

2. Clone this repository to your production server.

git clone https://github.com/deepforge-dev/deepforge.git

3. Install dependencies and add extensions:

cd deepforge && npm install
./bin/deepforge extensions add deepforge-dev/deepforge-keras

2. Generate token keys for user-management (required for user management).

chmod +x utils/generate_token_keys.sh
./utils/generate_token_keys.sh

Warning: The token keys are generated in the root of the project by default. If the token keys are stored in the
project root, they are accessible via /extlib, which is a security risk. So, please make sure you move the created
token keys out of the project root.

3. Configure your environment variables:

export MONGO_URI=mongodb://mongo:port/deepforge_database_name
export DEEPFORGE_HOST=https://url.of.server
export DEEPFORGE_PUBLIC_KEY=/path/to/public_key
export DEEPFORGE_PRIVATE_KEY=/path/to/private_key

4. Add a site-admin account by using deepforge-users command:

./bin/deepforge-users useradd -c -s admin_username admin_email admin_password

5. Now you should be ready to deploy a production server which can be done using deepforge command.

NODE_ENV=production ./bin/deepforge start --server

Note: The default port for a deepforge server is 8888. It can be changed using the option -p in the command above.

8.3. Manual Installation (Production) 27

https://conda.io/en/latest/

deepforge Documentation

28 Chapter 8. Native Installation

CHAPTER 9

Tutorial Project - Redshift

The project described on this page can be found in the examples repo on GitHub under the name Redshift-
Tutorial.webgmex

9.1 Pipeline Overview

1. Basic Input/Output

2. Display Random Image

3. Display Random CIFAR-10

4. Train CIFAR-10

5. Train-Test

6. Train-Test-Compare

7. Train-PredVis

8. Download-Train-Evaluate

9.2 Pipelines

9.2.1 Basic Input/Output

This pipeline provides one of the simplest examples of a pipeline possible in DeepForge. Its sole purpose is to create
an array of numbers, pass the array from the first node to the second node, and print the array to the output console.

The Output operation shown is a special built-in operation that will save the data that is provided to it to the selected
storage backend. This data will then be available within the same project as an artifact and can be accessed by other
pipelines using the special built-in Input operation.

29

https://github.com/deepforge-dev/examples/tree/master/redshift-tutorial

deepforge Documentation

import numpy

class GenArray():
def __init__(self, length=10):

self.length = length
return

def execute(self):
arr = list(numpy.random.rand(self.length))
return arr

9.2.2 Display Random Image

This pipeline’s primary purpose is to show how graphics can be output and viewed. A random noise image is generated
and displayed using matplotlib’s pyplot library. Any graphic displayed using the plt.show() function can be viewed in
the executions tab.

from matplotlib import pyplot as plt
from random import randint

class DisplayImage():
def execute(self, image):

if len(image.shape) == 4:
image = image[randint(0, image.shape[0] - 1)]

plt.imshow(image)
plt.show()

30 Chapter 9. Tutorial Project - Redshift

deepforge Documentation

9.2.3 Display Random CIFAR-10

As with the previous pipeline, this pipeline simply displays a single image. The image from this pipeline, however,
is more meaningful, as it is drawn from the commonly used CIFAR-10 dataset. This pipeline seeks to provide an
example of the input being used in the next pipeline while providing an example of how the data can be obtained.
This is important for users who seek to develop their own pipelines, as CIFAR-10 data generally serves as an effective
baseline for testing and development of new CNN architectures or training processes.

Also note, as shown in the figure above, that it is not necessary to utilize all of the outputs of a given node. Unless
specifically handled, however, it is generally inappropriate for an input to be left undefined.

from keras.datasets import cifar10

class GetDataCifar():
def execute(self):

((train_imgs, train_labels),
(test_imgs, test_labels)) = cifar10.load_data()
return train_imgs, train_labels, test_imgs, test_labels

9.2.4 Train CIFAR-10

This pipeline gives a very basic example of how to create, train, and evaluate a simple CNN. The primary takeaway
from this pipeline should be the overall structure of a training pipeline, which should follow the following steps in
most cases:

1. Load data

2. Define the loss, optimizer, and other metrics

3. Compile model, with loss, metrics, and optimizer, using the compile() method

4. Train model using the fit() method, which requires the training inputs and outputs

5. Output the trained model for serialization and/or utilization in subsequent nodes

import numpy as np
import keras

class TrainBasic():
def __init__(self, model, epochs=20, batch_size=32, shuffle=True):

self.model = model
self.epochs = epochs
self.batch_size = batch_size
self.shuffle = shuffle

(continues on next page)

9.2. Pipelines 31

http://www.cs.toronto.edu/~kriz/cifar.html

deepforge Documentation

(continued from previous page)

return

def execute(self, train_imgs, train_labels):
opt = keras.optimizers.rmsprop(lr=0.001)
self.model.compile(loss='sparse_categorical_crossentropy',

optimizer=opt,
metrics=['sparse_categorical_accuracy'])

self.model.fit(train_imgs,
train_labels,
batch_size=self.batch_size,
epochs=self.epochs,
shuffle=self.shuffle,
verbose=2)

model = self.model
return model

class EvalBasic():
def __init__(self):

return

def execute(self, model, test_imgs, test_labels):
results = model.evaluate(test_imgs, test_labels, verbose=0)
for i, metric in enumerate(model.metrics_names):

print(metric,'-',results[i])
return results

32 Chapter 9. Tutorial Project - Redshift

deepforge Documentation

9.2.5 Train-Test

This pipeline provides an example of how one might train and evaluate a redshift estimation model. In particular, the
procedure implemented here is a simplified version of work by Pasquet et. al. (2018). For readers unfamiliar with
cosmological redshift, this article provides a simple and brief introduction to the topic. For the training process, there
are two primary additions that should be noted.

First, the Train class has been given a function named to_categorical. In line with the Paquet et. al. method linked
above, this tutorial uses a classification model rather than a regression model for estimation. Because we are using
classification models, the keras model expects the output labels to be either one-hot vectors or a single integer where
the position/value indicates the range in which the true redshift value falls. This function converts the continuous
redshift values into the necessary discrete, categorical format.

Second, a class has been provided to give examples of how researchers may define their own keras Sequence for train-
ing. Sequences are helpful in that they allow alterations to be made to the data during training. In the example given
here, the SdssSequence class provides the ability to rotate or flip images before every epoch, which will hopefully
improve the robustness of the final model.

The evaluation node has also been updated to provide metrics more in line with redshift estimation. Specifically, it
calculates the fraction of outlier predictions, the model’s prediction bias, the deviation in the MAD scores of the model
output, and the average Continuous Ranked Probability Score (CRPS) of the output.

9.2.6 Train-Test-Compare

This pipeline gives a more complicated example of how to create visualizations that may be helpful for understanding
the effectiveness of a model. The EvalCompare node provides a simple comparison visualization of two models.

9.2.7 Train-PredVis

This pipeline shows another more complex and useful visualization example that can be helpful for understanding the
effectiveness of your redshift estimation model. It generates a set of graphs like the one below that show the output

9.2. Pipelines 33

https://www.aanda.org/articles/aa/abs/2019/01/aa33617-18/aa33617-18.html
https://earthsky.org/astronomy-essentials/what-is-a-redshift
https://keras.io/api/utils/python_utils/#sequence-class

deepforge Documentation

34 Chapter 9. Tutorial Project - Redshift

deepforge Documentation

probability distribution function (pdf) for the redshift values of a set of random galaxies’ images. A pair of vertical
lines in each subplot indicate the actual redshift value (green) and the predicted redshift value (red) for that galaxy.

As shown in this example, any visualization that can be created using the matplotlib.pyplot python library can be
created and displayed by a pipeline. Displaying these visualizations can be accomplished by calling the pyplot.show()
function after building the visualization. They can then be viewed from the Executions view.

import numpy as np
from matplotlib import pyplot as plt

class PredVis():
def __init__(self, num_bins=180, num_rows=1, num_cols=1, max_val=0.4):

self.num_rows = num_rows
self.num_cols = num_cols
self.xrange = np.arange(0, max_val, max_val / num_bins)
return

def execute(self, pt, gt, pdfs):
fig, splts = plt.subplots(self.num_rows, self.num_cols, sharex=True,

→˓sharey=True)

num_samples = self.num_rows * self.num_cols

random_indices = np.random.choice(list(range(len(gt))), num_samples,
→˓replace=False)

s_pdfs = np.take(pdfs, random_indices, axis=0)
s_pt = np.take(pt, random_indices, axis=0)
s_gt = np.take(gt, random_indices, axis=0)

for i in range(num_samples):
col = i % self.num_cols
row = i // self.num_cols
splts[row,col].plot(self.xrange, s_pdfs[i],'-')
splts[row,col].axvline(s_pt[i], color='red')
splts[row,col].axvline(s_gt[i], color='green')

plt.show()

9.2.8 Download-Train-Evaluate

This pipeline provides an example of how data can be retrieved and utilized in the same pipeline. The previous
pipelines use manually uploaded artifacts. In many real cases, users may desire to retrieve novel data or more specific
data using SciServer’s CasJobs API. In such cases, the DownloadSDSS node here makes downloading data relatively

9.2. Pipelines 35

https://matplotlib.org/3.2.2/api/_as_gen/matplotlib.pyplot.html
../fundamentals/interface.rst#Executions

deepforge Documentation

simple for users. It should be noted that the data downloaded is not in a form easily usable by our models and first
requires moderate preprocessing, which is performed in the Preprocessing node. This general structure of download-
process-train is a common pattern, as data is rarely supplied in a clean, immediately usable format.

36 Chapter 9. Tutorial Project - Redshift

CHAPTER 10

Redshift Estimation

The project described on this page can be found in the examples repo on GitHub under the name Redshift-
Application.webgmex

This project provides a small collection of generalized pipelines for the training and utilization of redshift estimation
models. This project is designed to allow simple use by only requiring that the configuration parameters of individual
nodes be defined where necessary. The most involved alterations that should be necessary for most users is the
definition of additional architectures in the Resources tab. It should be noted that any newly defined architecture
should have an output length and input shape that match the num_bins and input_shape configuration parameters
being used in the various pipelines.

10.1 Pipeline Overview

• Train Test Single

• Train Test Compare

• Download Train Evaluate

• Train Predict

• Predict Pretrained

• Test Pretrained

• Download SDSS

• Download Train Predict

• Visualize Predictions

37

https://github.com/deepforge-dev/examples/tree/master/redshift-tutorial

deepforge Documentation

10.2 Pipelines

10.2.1 Train Test Single

Trains and evaluates a single CNN model. Uses predefined artifacts that contain the training and testing data. For this
and all training pipelines, the artifacts should each contain a single numpy array. Input arrays should be a 4D array
of shape (n, y, x, c) where n=number of images, y=image height, x=image width, and c=number of color channels.
Output (label) arrays should be of shape (n,) .

10.2.2 Train Test Compare

Trains and evaluates two CNN models and compares effectiveness of the models.

10.2.3 Download Train Evaluate

Downloads SDSS images, trains a model on the images, and evaluates the model on a separate set of downloaded
images. Care should be taken when defining your own CasJobs query to ensure that all queried galaxies for training
have a redshift value below the Train node’s max_val configuration parameter’s value.

10.2.4 Train Predict

Trains a single CNN model and uses the newly trained model to predict the redshift value of another set of galaxies.

10.2.5 Predict Pretrained

Predicts the redshift value of a set of galaxies using a pre-existing model that is saved as an artifact.

38 Chapter 10. Redshift Estimation

deepforge Documentation

10.2.6 Test Pretrained

Evaluates the performance of a pre-existing model that is saved as an artifact.

10.2.7 Download SDSS

Download SDSS images and save them as artifacts. Can be used in conjunction with the other pipelines that rely on
artifacts rather than images retrieved at execution time.

10.2.8 Download Train Predict

Download SDSS images and use some images to train a model before using the model to predict the redshift value of
the remaining galaxies.

10.2.9 Visualize Predictions

This pipeline produces a visualization that can be helpful for understanding the effectiveness of your redshift estimation
model. It generates a set of graphs like the one below that show the output probability distribution function (pdf) for
the redshift values of a set of random galaxies’ images. A pair of vertical lines in each subplot indicate the actual
redshift value (green) and the predicted redshift value (red) for that galaxy. This allows users to see how far the
model’s predictions are from the correct answers and can help with identifying biases or weak-points the model may
have (for example, consistently underestimation or inaccuracy with galaxies in a specific redshift range).

10.2. Pipelines 39

deepforge Documentation

40 Chapter 10. Redshift Estimation

CHAPTER 11

Command Line Interface

This document outlines the functionality of the deepforge command line interface (provided after installing deepforge
with npm install -g deepforge).

• Installation Configuration

• Starting DeepForge or Components

• Update or Uninstall DeepForge

• Managing Extensions

11.1 Installation Configuration

Installation configuration can be edited using the deepforge config command as shown in the following exam-
ples:

Printing all the configuration settings:

deepforge config

Printing the value of a configuration setting:

deepforge config blob.dir

Setting a configuration option, such as blob.dir can be done with:

deepforge config blob.dir /some/new/directory

For more information about the configuration settings, check out the configuration page.

41

configuration.rst

deepforge Documentation

11.2 Starting DeepForge Components

The DeepForge server can be started with the deepforge start command. By default, this command will start
both the server and a mongo database (if applicable).

The server can be started by itself using

deepforge start --server

11.3 Update/Uninstall DeepForge

DeepForge can be updated or uninstalled using

deepforge update

DeepForge can be uninstalled using deepforge uninstall

11.4 Managing Extensions

DeepForge extensions can be installed and removed using the deepforge extensions subcommand. Extensions
can be added, removed and listed as shown below

deepforge extensions add https://github.com/example/some-extension
deepforge extensions remove some-extension
deepforge extensions list

42 Chapter 11. Command Line Interface

CHAPTER 12

Configuration

Configuration of deepforge is done through the deepforge config command from the command line interface. To see
all config options, simply run deepforge config with no additional arguments. This will print a JSON representation of
the configuration settings similar to:

Current config:
{

"blob": {
"dir": "/home/irishninja/.deepforge/blob"

},
"mongo": {
"dir": "~/.deepforge/data"

}
}

Setting an attribute, say blob.dir, is done as follows

deepforge config blob.dir /tmp

12.1 Environment Variables

Most settings have a corresponding environment variable which can be used to override the value set in the cli’s
configuration. This allows the values to be temporarily set for a single run. For example, starting the server with a
different blob location can be accomplished by setting blob.dir can be done with:

DEEPFORGE_BLOB_DIR=/tmp deepforge start -s

The complete list of the environment variable overrides for the configuration options can be found here.

43

https://github.com/deepforge-dev/deepforge/blob/master/bin/envConfig.json

deepforge Documentation

12.2 Settings

12.2.1 blob.dir

The path to the blob (large file storage containing models, datasets, etc) to be used by the deepforge server.

This can be overridden with the DEEPFORGE_BLOB_DIR environment variable.

12.2.2 mongo.dir

The path to use for the –dbpath option of mongo if starting mongo using the command line interface. That is, if
the MONGO_URI is set to a local uri and the cli is starting the deepforge server, the cli will check to verify that an
instance of mongo is running locally. If not, it will start it on the given port and use this setting for the –dbpath setting
of mongod.

44 Chapter 12. Configuration

CHAPTER 13

Operation Feedback

Operations can provide a variety of forms of real-time feedback including subplots, 2D and 3D plots and images using
matplotlib.

13.1 Graphs

The following example shows a sample 3D scatter plot and its rendering in DeepForge.

import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D

class Scatter3DPlots():

def execute(self):
Set random seed for reproducibility
np.random.seed(19680801)

def randrange(n, vmin, vmax):
'''
Helper function to make an array of random numbers having shape (n,)
with each number distributed Uniform(vmin, vmax).
'''
return (vmax - vmin)*np.random.rand(n) + vmin

fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')

n = 100

For each set of style and range settings, plot n random points in the box
defined by x in [23, 32], y in [0, 100], z in [zlow, zhigh].

(continues on next page)

45

deepforge Documentation

(continued from previous page)

for m, zlow, zhigh in [('o', -50, -25), ('^', -30, -5)]:
xs = randrange(n, 23, 32)
ys = randrange(n, 0, 100)
zs = randrange(n, zlow, zhigh)
ax.scatter(xs, ys, zs, marker=m)

ax.set_xlabel('X Label')
ax.set_ylabel('Y Label')
ax.set_zlabel('Z Label')
plt.show()

Fig. 1: Example of a 3D scatter plot using matplotlib in DeepForge

13.2 Images

Visualizing images using matplotlib is also supported. The following example shows images from the MNIST fashion
dataset.

46 Chapter 13. Operation Feedback

deepforge Documentation

from matplotlib import pyplot
from keras.datasets import fashion_mnist

class MnistFashion():

def execute(self):

(trainX, trainy), (testX, testy) = fashion_mnist.load_data()
summarize loaded dataset
print('Train: X=%s, y=%s' % (trainX.shape, trainy.shape))
print('Test: X=%s, y=%s' % (testX.shape, testy.shape))
for i in range(9):

pyplot.subplot(330 + 1 + i) # define subplot
pyplot.imshow(trainX[i], cmap=pyplot.get_cmap('gray')) # plot raw pixel

→˓data
pyplot.show()

13.2. Images 47

deepforge Documentation

Fig. 2: Visualizing MNIST fashion images in DeepForge

48 Chapter 13. Operation Feedback

	Getting Started
	Quick Start
	Interface Overview
	Custom Operations
	Storage and Compute Adapters
	Quick Start
	Overview
	Native Installation
	Tutorial Project - Redshift
	Redshift Estimation
	Command Line Interface
	Configuration
	Operation Feedback

